login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327302 One of the two successive approximations up to 5^n for the 5-adic integer sqrt(-9). This is the 1 (mod 5) case (except for n = 0). 3
0, 1, 21, 46, 546, 3046, 12421, 59296, 59296, 840546, 8653046, 28184296, 125840546, 369981171, 2811387421, 2811387421, 2811387421, 460575059296, 2749393418671, 10378787949921, 48525760606171, 143893192246796, 2051241825059296, 6819613407090546, 30661471317246796 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) is the unique number k in [1, 5^n] and congruent to 1 mod 5 such that k^2 + 9 is divisible by 5^n.
LINKS
G. P. Michon, Introduction to p-adic integers, Numericana.
FORMULA
a(1) = 1; for n >= 2, a(n) is the unique number k in {a(n-1) + m*5^(n-1) : m = 0, 1, 2, 3, 4} such that k^2 + 9 is divisible by 5^n.
For n > 0, a(n) = 5^n - A327303(n).
EXAMPLE
The unique number k in {1, 6, 11, 16, 21} such that k^2 + 9 is divisible by 25 is k = 21, so a(2) = 21.
The unique number k in {21, 46, 71, 96, 121} such that k^2 + 9 is divisible by 125 is k = 46, so a(3) = 46.
The unique number k in {46, 171, 296, 421, 546} such that k^2 + 9 is divisible by 625 is k = 546, so a(4) = 546.
PROG
(PARI) a(n) = truncate(sqrt(-9+O(5^n)))
CROSSREFS
For the digits of sqrt(-9) see A327304 and A327305.
Approximations of 5-adic square roots:
this sequence, A327303 (sqrt(-9));
A324027, A324028 (sqrt(-6));
A268922, A269590 (sqrt(-4));
A048898, A048899 (sqrt(-1));
A324023, A324024 (sqrt(6)).
Sequence in context: A044479 A139581 A250777 * A156966 A146705 A146713
KEYWORD
nonn
AUTHOR
Jianing Song, Sep 16 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 12:31 EDT 2024. Contains 375829 sequences. (Running on oeis4.)