login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155031 Triangle T(n, k) = 0 if n==0 (mod k) otherwise -1 with T(n, n) = 1 and T(n, 0) = 0, read by rows. 3
1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, -1, -1, -1, 1, 0, 0, 0, -1, -1, 1, 0, -1, -1, -1, -1, -1, 1, 0, 0, -1, 0, -1, -1, -1, 1, 0, -1, 0, -1, -1, -1, -1, -1, 1, 0, 0, -1, -1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1, -1, -1, -1, -1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Rows n = 1..30 of the triangle, flattened

FORMULA

T(n, k) = A154990(n, k) * A155029(n, k).

T(n, k) = 0 if n==0 (mod k) otherwise -1 with T(n, n) = 1 and T(n, 0) = 0.

EXAMPLE

Table begins:

  1;

  0,  1;

  0, -1,  1;

  0,  0, -1,  1;

  0, -1, -1, -1,  1;

  0,  0,  0, -1, -1,  1;

  0, -1, -1, -1, -1, -1,  1;

  0,  0, -1,  0, -1, -1, -1,  1;

  0, -1,  0, -1, -1, -1, -1, -1, 1;

MATHEMATICA

T[n_, k_]:= If[k==n, 1, If[k==1 || Mod[n, k]==0, 0, -1]];

Table[T[n, k], {n, 12}, {k, n}] //Flatten (* G. C. Greubel, Mar 08 2021 *)

PROG

(Sage) flatten([[1 if k==n else 0 if (k==1 or n%k==0) else -1 for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Mar 08 2021

(Magma) [k eq n select 1 else (k eq 1 or n mod k eq 0) select 0 else -1: k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 08 2021

CROSSREFS

Cf. A154990, A155029.

Sequence in context: A187034 A101688 A155029 * A134540 A318962 A128430

Adjacent sequences:  A155028 A155029 A155030 * A155032 A155033 A155034

KEYWORD

sign,tabl

AUTHOR

Mats Granvik, Jan 19 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 01:08 EDT 2021. Contains 343632 sequences. (Running on oeis4.)