login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155034
Primes with smallest digit odd and prime (i.e., 3, 5 or 7).
1
3, 5, 7, 37, 43, 53, 59, 73, 79, 83, 97, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 433, 439, 443, 463, 557, 563, 569, 577, 587, 593, 599, 643, 653, 659, 673, 683, 733, 739, 743, 757, 773, 787, 797, 839, 853, 857, 859, 863, 877, 883, 887, 937, 953, 977
OFFSET
1,1
COMMENTS
Primes p such that A054054(p) is in the set {3, 5, 7}. - Felix Fröhlich, Jan 26 2017
LINKS
MAPLE
N:= 4: # to get all terms with <+ N digits
for j in [3, 5, 7] do L[1, j]:= {$j..9}; C[1, j]:= {j} od;
for d from 2 to N do
for j in [3, 5, 7] do L[d, j]:= map(t -> $(10*t+j)..(10*t+9), L[d-1, j]) od:
C[d, 3]:= map(t -> (10*t+3), L[d-1, 3]) union map(t ->seq(10*t+j, j=4..9), C[d-1, 3]);
C[d, 5]:= map(t -> (10*t+5), L[d-1, 5]) union map(t -> seq(10*t+j, j=6..9), C[d-1, 5]);
C[d, 7]:= map(t -> (10*t+7), L[d-1, 7]) union map(t -> seq(10*t+j, j=8..9), C[d-1, 7]);
od:
sort(convert(`union`(seq(seq(select(isprime, C[d, j]), j=[3, 5, 7]), d=1..N)), list));
# Robert Israel, Jan 26 2017
PROG
(PARI) is(n) = ispseudoprime(n) && #setintersect(Set(vecmin(digits(n))), [3, 5, 7])==1 \\ Felix Fröhlich, Jan 26 2017
CROSSREFS
Sequence in context: A327413 A106115 A154544 * A126359 A182373 A087363
KEYWORD
nonn,base,less
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 24 2009
Corrected by Robert Israel, Jan 26 2017
STATUS
approved