login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318962
Digits of one of the two 2-adic integers sqrt(-7) that ends in 01.
9
1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Over the 2-adic integers there are 2 solutions to x^2 = -7, one ends in 01 and the other ends in 11. This sequence gives the former one. See A318960 for detailed information.
LINKS
FORMULA
a(0) = 1, a(1) = 0; for n >= 2, a(n) = 0 if A318960(n)^2 + 7 is divisible by 2^(n+2), otherwise 1.
a(n) = 1 - A318963(n) for n >= 1.
For n >= 2, a(n) = (A318960(n+1) - A318960(n))/2^n.
EXAMPLE
...10110001110011100100110001100000010110101.
PROG
(PARI) a(n) = truncate(-sqrt(-7+O(2^(n+2))))\2^n
CROSSREFS
Cf. A318960.
Digits of p-adic integers:
this sequence, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A212152, A212155 (7-adic, (1+sqrt(-3))/2);
A051277, A290558 (7-adic, sqrt(2));
A286838, A286839 (13-adic, sqrt(-1));
A309989, A309990 (17-adic, sqrt(-1)).
Also there are numerous sequences related to digits of 10-adic integers.
Sequence in context: A155029 A155031 A134540 * A128430 A176330 A363914
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 06 2018
EXTENSIONS
Corrected by Jianing Song, Aug 28 2019
STATUS
approved