|
|
A101689
|
|
Decimal expansion of the unique real number x whose Engel expansion is the Fibonacci sequence.
|
|
8
|
|
|
2, 7, 0, 4, 5, 0, 2, 8, 9, 9, 1, 5, 4, 0, 6, 7, 4, 8, 7, 1, 9, 7, 5, 4, 8, 9, 6, 6, 1, 8, 1, 8, 7, 9, 7, 8, 5, 1, 7, 7, 8, 3, 4, 8, 3, 1, 3, 6, 0, 6, 2, 8, 1, 6, 9, 2, 1, 6, 1, 4, 7, 1, 7, 9, 7, 0, 5, 7, 9, 7, 4, 3, 2, 7, 7, 3, 3, 8, 2, 7, 7, 3, 0, 0, 3, 7, 3, 4, 8, 9, 3, 2, 4, 6, 4, 7, 5, 8, 1, 1, 9, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..102.
|
|
FORMULA
|
x = Sum_{n >= 1} 1/(Product_{1 <= i <= n} F(i)), where F(i) is the i-th Fibonacci number.
|
|
EXAMPLE
|
x = 2.70450289915406748719754896618187978517783483136...
|
|
MAPLE
|
with(combinat); P:=proc(q)
evalf(add(mul(1/fibonacci(i), i=1..k), k=1..q), 200); end: # Paolo P. Lava, Feb 13 2014
|
|
MATHEMATICA
|
N[Sum[1/Product[Fibonacci[i], {i, n}], {n, 300}], 100]
|
|
PROG
|
(PARI) suminf(n=1, 1/prod(i=1, n, fibonacci(i))) \\ Michel Marcus, Nov 28 2020
|
|
CROSSREFS
|
Cf. A000045, A137991 (reciprocal).
Sequence in context: A260129 A341318 A332324 * A175292 A277815 A229178
Adjacent sequences: A101686 A101687 A101688 * A101690 A101691 A101692
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Ryan Propper, Dec 11 2004
|
|
STATUS
|
approved
|
|
|
|