login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175292
Decimal expansion of the value of Pi*(gamma + log Pi)/2, where gamma is the Euler-Mascheroni constant.
1
2, 7, 0, 4, 8, 2, 5, 7, 4, 6, 0, 6, 0, 3, 8, 0, 8, 4, 8, 8, 4, 9, 5, 6, 8, 1, 4, 1, 4, 5, 8, 7, 0, 0, 2, 0, 0, 2, 3, 8, 4, 2, 1, 7, 3, 5, 5, 6, 3, 2, 3, 9, 0, 1, 9, 5, 6, 6, 6, 9, 6, 0, 9, 9, 5, 0, 9, 2, 3, 4, 3, 9, 3, 0, 8, 6, 8, 7, 9, 4, 3, 3, 5, 2, 1, 4, 0, 7, 2, 5, 0, 0, 5, 6, 1, 3, 7, 8, 3, 3, 1, 7, 7, 5, 8
OFFSET
1,1
COMMENTS
The absolute value of the integral of sin(Pi*x)*log(x)/x from x=0 to infinity.
LINKS
I. Gradsteyn, I. Ryzhik, Table of integrals, series and products, (1981) [4.421.1].
FORMULA
Equals A019669*(A001620 + A053510).
EXAMPLE
2.7048257460603808488495681414587002002384217355632...
MAPLE
evalf(Pi*(gamma+log(Pi))/2) ;
MATHEMATICA
RealDigits[Pi*(EulerGamma + Log[Pi])/2, 10, 100][[1]] (* G. C. Greubel, Sep 06 2018 *)
PROG
(PARI) default(realprecision, 100); Pi*(Euler + log(Pi))/2 \\ G. C. Greubel, Sep 06 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)*(EulerGamma(R) + Log(Pi(R)))/2; // G. C. Greubel, Sep 06 2018
CROSSREFS
Sequence in context: A341318 A332324 A101689 * A277815 A229178 A019667
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Mar 24 2010
STATUS
approved