login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175295
Decimal expansion of the integral of cos(Pi*x)*log(x)/x^2 from x=1 to infinity.
1
0, 2, 9, 9, 1, 3, 2, 0, 3, 9, 8, 3, 9, 3, 4, 9, 7, 8, 4, 3, 9, 3, 0, 1, 7, 9, 2, 2, 3, 5, 6, 2, 4, 5, 9, 0, 7, 6, 3, 8, 7, 8, 1, 8, 9, 4, 7, 7, 2, 1, 4, 3, 6, 8, 4, 2, 9, 2, 3, 2, 9, 4, 8, 8, 0, 6, 1, 3, 3, 0, 8, 5, 2, 3, 5, 1, 8, 3, 7, 6, 5, 3, 1, 7, 8, 7, 7, 5, 7, 8, 8, 2, 2, 6, 7, 1, 7, 8, 1, 1, 5, 4, 6, 8, 7
OFFSET
0,2
FORMULA
1+ A102753*( A053510 -1 + A001620 - 3F4(1/2,1/2,1; 3/2,3/2,3/2,2 ; -A091476) ) .
EXAMPLE
0.02991320398393497843930179...
MAPLE
evalf(1+Pi^2/2*( gamma+log(Pi)-1 ) -Pi^2*hypergeom([1/2, 1/2, 1], [3/2, 3/2, 3/2, 2], -Pi^2/4)/2 ) ;
MATHEMATICA
Join[{0}, RealDigits[ N[1/2*(Pi^2*(-2*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2, 3/2}, -Pi^2/4] + Log[Pi] + EulerGamma - 1) + 2*Pi*SinIntegral[Pi] - 2), 105]][[1]]] (* Jean-François Alcover, Nov 08 2012 *)
Join[{0}, RealDigits[NIntegrate[Cos[Pi*x] Log[x]/x^2, {x, 1, \[Infinity]}, WorkingPrecision->1000], 10, 120][[1]]] (* Harvey P. Dale, Nov 01 2017 *)
CROSSREFS
Sequence in context: A104954 A244292 A011072 * A198141 A336043 A340723
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Mar 24 2010
STATUS
approved