The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175295 Decimal expansion of the integral of cos(Pi*x)*log(x)/x^2 from x=1 to infinity. 1
 0, 2, 9, 9, 1, 3, 2, 0, 3, 9, 8, 3, 9, 3, 4, 9, 7, 8, 4, 3, 9, 3, 0, 1, 7, 9, 2, 2, 3, 5, 6, 2, 4, 5, 9, 0, 7, 6, 3, 8, 7, 8, 1, 8, 9, 4, 7, 7, 2, 1, 4, 3, 6, 8, 4, 2, 9, 2, 3, 2, 9, 4, 8, 8, 0, 6, 1, 3, 3, 0, 8, 5, 2, 3, 5, 1, 8, 3, 7, 6, 5, 3, 1, 7, 8, 7, 7, 5, 7, 8, 8, 2, 2, 6, 7, 1, 7, 8, 1, 1, 5, 4, 6, 8, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 R. J. Mathar, Numerical evaluation of the oscillatory integral over exp(i*pi*x)*x^(1/x) between 1 and infinity, arXiv:0912.3844 [math.CA], 2009-2010, App. B. FORMULA 1+ A102753*( A053510 -1 + A001620 - 3F4(1/2,1/2,1; 3/2,3/2,3/2,2 ; -A091476) ) . EXAMPLE 0.02991320398393497843930179... MAPLE evalf(1+Pi^2/2*( gamma+log(Pi)-1 ) -Pi^2*hypergeom([1/2, 1/2, 1], [3/2, 3/2, 3/2, 2], -Pi^2/4)/2 ) ; MATHEMATICA Join[{0}, RealDigits[ N[1/2*(Pi^2*(-2*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2, 3/2}, -Pi^2/4] + Log[Pi] + EulerGamma - 1) + 2*Pi*SinIntegral[Pi] - 2), 105]][[1]]] (* Jean-François Alcover, Nov 08 2012 *) Join[{0}, RealDigits[NIntegrate[Cos[Pi*x] Log[x]/x^2, {x, 1, \[Infinity]}, WorkingPrecision->1000], 10, 120][[1]]] (* Harvey P. Dale, Nov 01 2017 *) CROSSREFS Sequence in context: A104954 A244292 A011072 * A198141 A336043 A340723 Adjacent sequences: A175292 A175293 A175294 * A175296 A175297 A175298 KEYWORD cons,easy,nonn AUTHOR R. J. Mathar, Mar 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 17:05 EST 2023. Contains 359923 sequences. (Running on oeis4.)