login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226864
Expansion of phi(-x^3) * f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.
1
1, 0, 0, -2, -1, 0, 0, 2, -1, 0, 0, 2, 2, 0, 0, 0, -2, 0, 0, 0, -1, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 2, -2, 0, 0, -2, -2, 0, 0, 0, -3, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 2, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/6) * eta(q^3)^2 * eta(q^4) / eta(q^6) in powers of q.
Euler transform of period 12 sequence [ 0, 0, -2, -1, 0, -1, 0, -1, -2, 0, 0, -2, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^(3*k^2)) * Product_{k>0} (1 - x^(4*k)).
a(n) = (-1)^n * A226862(n). a(4*n + 1) = a(4*n + 2) = 0. a(4*n) = A226289(n).
EXAMPLE
1 - 2*x^3 - x^4 + 2*x^7 - x^8 + 2*x^11 + 2*x^12 - 2*x^16 - x^20 - 2*x^23 + ...
q - 2*q^19 - q^25 + 2*q^43 - q^49 + 2*q^67 + 2*q^73 - 2*q^97 - q^121 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3] QPochhammer[ q^4], {q, 0, n}]
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A) / eta(x^6 + A), n))}
CROSSREFS
Sequence in context: A302236 A262929 A226862 * A257399 A168313 A072575
KEYWORD
sign
AUTHOR
Michael Somos, Jun 20 2013
STATUS
approved