login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226861
Expansion of phi(x) * f(-x^3) in powers of x where phi(), f() are Ramanujan theta functions.
2
1, 2, 0, -1, 0, 0, -1, -4, 0, 2, -2, 0, -2, 0, 0, -1, 4, 0, 0, 0, 0, 1, 0, 0, 2, 4, 0, 0, -2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, -2, 0, 0, -2, 0, 0, -3, 0, 0, 0, 0, 0, 2, -4, 0, -2, -2, 0, 2, 0, 0, 0, -4, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, 1, 4, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^5 * eta(q^3) / (eta(q) * eta(q^4))^2 in powers of q.
Euler transform of period 12 sequence [2, -3, 1, -1, 2, -4, 2, -1, 1, -3, 2, -2, ...].
G.f.: (Sum_{k in Z} x^(k^2)) * Product_{k>0} (1 - x^(3*k)).
a(3*n + 2) = 0. a(3*n) = A226289(n).
EXAMPLE
G.f. = 1 + 2*x - x^3 - x^6 - 4*x^7 + 2*x^9 - 2*x^10 - 2*x^12 - x^15 + 4*x^16 + ...
G.f. = q + 2*q^9 - q^25 - q^49 - 4*q^57 + 2*q^73 - 2*q^81 - 2*q^97 - q^121 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] QPochhammer[ q^3], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A) / (eta(x + A) * eta(x^4 + A))^2, n))};
CROSSREFS
Cf. A226289.
Sequence in context: A286604 A366784 A217540 * A185643 A363051 A278515
KEYWORD
sign
AUTHOR
Michael Somos, Jun 20 2013
STATUS
approved