login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123721
a(n) = A123249(n) - 2*n.
1
1, 0, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 0, 4, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 2
OFFSET
1,9
COMMENTS
Conjecture: For k > 1, the smallest n such that a(n) = k is A123720(k) = 2^k + 2^(k-1) - k. Confirmed for k <= 22.
LINKS
B. M. Abrego, S. Fernandez-Merchant, B. Llano, An Inequality for Macaulay Functions, J. Int. Seq. 14 (2011) # 11.7.4
PROG
(PARI) {m=105; w=vector(3*m); print1(a=1, ", "); for(n=2, m, k=n; while(w[k], k++); a=n+k; print1(a-2*n, ", "); w[a]=1)}
CROSSREFS
Sequence in context: A112344 A294080 A294019 * A077618 A356859 A085863
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 09 2006
STATUS
approved