|
|
A102434
|
|
Sum_{k=1..n} {number of partitions of n into powers k^m where 0<=m<n}.
|
|
5
|
|
|
1, 5, 14, 43, 136, 477, 1733, 6459, 24338, 92413, 352753, 1352127, 5200351, 20058360, 77558825, 300540275, 1166803192, 4537567749, 17672632001, 68923264531, 269128937347, 1052049482004, 4116715363946, 16123801841726
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Equivalently, Sum_{k=2}^n (Number of partitions of n into powers of k) + Number of partitions of n into n 1's; the latter term is C(2n-1,n).
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..500
|
|
FORMULA
|
a(n) = A102433(n) - n + 1 = A102431(n) + C(2n-1,n).
|
|
EXAMPLE
|
a(2) = 5; 3 partitions for k=1: 2.1^0, 1.1^1+1.1^0, 2.1^1; and 2 for k=2: 2.2^0, 1.2^1
|
|
CROSSREFS
|
Cf. A001700, A102430, A102431, A102432, A102433, A018819, A062051.
Sequence in context: A210972 A197607 A296829 * A186649 A120901 A222988
Adjacent sequences: A102431 A102432 A102433 * A102435 A102436 A102437
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Marc LeBrun, Jan 08 2005
|
|
EXTENSIONS
|
Edited and verified by Franklin T. Adams-Watters, Mar 10, 2006
|
|
STATUS
|
approved
|
|
|
|