login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102436
Number of matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.
5
1, 5, 34, 223, 1469, 9672, 63685, 419329, 2761042, 18179883, 119704137, 788183312, 5189736537, 34171448333, 224999452834, 1481492773799, 9754783005797, 64229669677144, 422915657312253, 2784657839576297, 18335379997029650
OFFSET
0,2
COMMENTS
Row sums of A102435. The number of matchings of the ladder graph L(n)=P_2 X P_n is given in A030186.
Number of tilings of a 2xn board with squares of 2 colors and dominoes of 1 color [Katz-Stenson]. - R. J. Mathar, Apr 17 2009
LINKS
M. Katz, C. Stenson, Tiling a 2xn-board with squares and dominoes, J. Int. Seq. 12 (2009) # 09.2.2
FORMULA
a(n) = 6*a(n-1) + 4*a(n-2) - a(n-3) for n>=3.
G.f.: (1-x) / (1-6*x-4*x^2+x^3).
EXAMPLE
a(2)=34 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have one 0-matching (the empty set), eight 1-matchings (each edge as a singleton), sixteen 2-matchings (see Example in A102435), eight 3-matchings (any 3-element subset of {Aa,Bb,Cc,Dd} and {Aa,Bb,CD},{Bb,Cc,AD},{Cc,Dd,AB},{Aa,Dd,BC}) and one 4-matching ({Aa,Bb,Cc,Dd}).
MAPLE
a[0]:=1: a[1]:=5: a[2]:=34: for n from 3 to 24 do a[n]:=6*a[n-1]+4*a[n-2] -a[n-3] od: seq(a[n], n=0..24);
MATHEMATICA
LinearRecurrence[{6, 4, -1}, {1, 5, 34}, 30] (* G. C. Greubel, Oct 27 2019 *)
PROG
(PARI) Vec((1 - x) / (1 - 6*x - 4*x^2 + x^3) + O(x^30)) \\ Colin Barker, Jun 06 2017
(Magma) I:=[1, 5, 34]; [n le 3 select I[n] else 6*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 27 2019
(Sage)
def A102436_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1-6*x-4*x^2+x^3)).list()
A102436_list(30) # G. C. Greubel, Oct 27 2019
(GAP) a:=[1, 5, 34];; for n in [4..30] do a[n]:=6*a[n-1]+4*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jan 08 2005
STATUS
approved