login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.
5

%I #19 Sep 08 2022 08:45:16

%S 1,5,34,223,1469,9672,63685,419329,2761042,18179883,119704137,

%T 788183312,5189736537,34171448333,224999452834,1481492773799,

%U 9754783005797,64229669677144,422915657312253,2784657839576297,18335379997029650

%N Number of matchings of the corona L'(n) of the ladder graph L(n)=P_2 X P_n. and the complete graph K(1); in other words, L'(n) is the graph constructed from L(n) by adding for each vertex v a new vertex v' and the edge vv'.

%C Row sums of A102435. The number of matchings of the ladder graph L(n)=P_2 X P_n is given in A030186.

%C Number of tilings of a 2xn board with squares of 2 colors and dominoes of 1 color [Katz-Stenson]. - _R. J. Mathar_, Apr 17 2009

%H Colin Barker, <a href="/A102436/b102436.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Katz, C. Stenson, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Stenson/stenson8.html">Tiling a 2xn-board with squares and dominoes</a>, J. Int. Seq. 12 (2009) # 09.2.2

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,4,-1).

%F a(n) = 6*a(n-1) + 4*a(n-2) - a(n-3) for n>=3.

%F G.f.: (1-x) / (1-6*x-4*x^2+x^3).

%e a(2)=34 because in the graph L'(2) with vertex set {A,B,C,D,a,b,c,d} and edge set {AB,BC,CD,AD,Aa,Bb,Cc,Dd} we have one 0-matching (the empty set), eight 1-matchings (each edge as a singleton), sixteen 2-matchings (see Example in A102435), eight 3-matchings (any 3-element subset of {Aa,Bb,Cc,Dd} and {Aa,Bb,CD},{Bb,Cc,AD},{Cc,Dd,AB},{Aa,Dd,BC}) and one 4-matching ({Aa,Bb,Cc,Dd}).

%p a[0]:=1: a[1]:=5: a[2]:=34: for n from 3 to 24 do a[n]:=6*a[n-1]+4*a[n-2] -a[n-3] od: seq(a[n],n=0..24);

%t LinearRecurrence[{6,4,-1}, {1,5,34}, 30] (* _G. C. Greubel_, Oct 27 2019 *)

%o (PARI) Vec((1 - x) / (1 - 6*x - 4*x^2 + x^3) + O(x^30)) \\ _Colin Barker_, Jun 06 2017

%o (Magma) I:=[1,5,34]; [n le 3 select I[n] else 6*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..30]]; // _G. C. Greubel_, Oct 27 2019

%o (Sage)

%o def A102436_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P((1-x)/(1-6*x-4*x^2+x^3)).list()

%o A102436_list(30) # _G. C. Greubel_, Oct 27 2019

%o (GAP) a:=[1,5,34];; for n in [4..30] do a[n]:=6*a[n-1]+4*a[n-2]-a[n-3]; od; a; # _G. C. Greubel_, Oct 27 2019

%Y Cf. A030186, A102435, A253265.

%K nonn,easy

%O 0,2

%A _Emeric Deutsch_, Jan 08 2005