The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101414 Defiant primes of order 3. Primes p such that no prime numerator and denominator of the continued fraction rational approximation of sqrt(p) exist for numerators less than 10^3 digits in length. 0
 5, 17, 23, 37, 47, 53, 61, 79, 83, 97, 101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Defiant primes of order k are also of order r where 0 < r < k. LINKS EXAMPLE The 8th convergent of sqrt(5) is c = 51841/23184. c^2 = 5.00000000186... but both numerator and denominator are nonprime. PROG (PARI) cfracnumdenomprime(m, f) = { default(realprecision, 3000); cf = vector(m+10); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer)&&ispseudoprime(denom), print1(numer", "); numer2=numer; denom2=denom); if(length(Str(numer))>999, break); ) } CROSSREFS Sequence in context: A067377 A153504 A044438 * A105884 A019410 A133423 Adjacent sequences:  A101411 A101412 A101413 * A101415 A101416 A101417 KEYWORD frac,nonn,base AUTHOR Cino Hilliard, Jan 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 10:09 EDT 2020. Contains 333125 sequences. (Running on oeis4.)