login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245970 Tower of 2's modulo n. 14
0, 0, 1, 0, 1, 4, 2, 0, 7, 6, 9, 4, 3, 2, 1, 0, 1, 16, 5, 16, 16, 20, 6, 16, 11, 16, 7, 16, 25, 16, 2, 0, 31, 18, 16, 16, 9, 24, 16, 16, 18, 16, 4, 20, 16, 6, 17, 16, 23, 36, 1, 16, 28, 34, 31, 16, 43, 54, 48, 16, 22, 2, 16, 0, 16, 64, 17, 52, 52, 16, 3, 16 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
a(n) = (2^(2^(2^(2^(2^ ... ))))) mod n, provided enough 2's are in the tower so that adding more doesn't affect the value of a(n).
REFERENCES
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
Wayne VanWeerthuizen, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = 2^(A000010(n)+a(A000010(n))) mod n.
a(n) = 0 if n is a power of 2.
a(n) = (2^2) mod n, if n < 5.
a(n) = (2^(2^2)) mod n, if n < 11.
a(n) = (2^(2^(2^2))) mod n, if n < 23.
a(n) = (2^(2^(2^(2^2)))) mod n, if n < 47.
a(n) = (2^^k) mod n, if n < A027763(k), where ^^ is Knuth's double-arrow notation.
From Robert Israel, Aug 19 2014: (Start)
If gcd(m,n) = 1, then a(m*n) is the unique k in [0,...,m*n-1] with
k == a(n) mod n and k == a(m) mod m.
a(n) = 1 if n is a Fermat number.
a(n) = 2^a(A000010(n)) mod n if n is not in A003401.
(End)
EXAMPLE
a(5) = 1, as 2^x mod 5 is 1 for x being any even multiple of two and X = 2^(2^(2^...)) is an even multiple of two.
MAPLE
A:= proc(n)
local phin, F, L, U;
phin:= numtheory:-phi(n);
if phin = 2^ilog2(phin) then
F:= ifactors(n)[2];
L:= map(t -> t[1]^t[2], F);
U:= [seq(`if`(F[i][1]=2, 0, 1), i=1..nops(F))];
chrem(U, L);
else
2 &^ A(phin) mod n
fi
end proc:
seq(A(n), n=2 .. 100); # Robert Israel, Aug 19 2014
MATHEMATICA
(* Import Mmca coding for "SuperPowerMod" and "LogStar" from text file in A133612 and then *) $RecursionLimit = 2^14; f[n_] := SuperPowerMod[2, 2^n, n] (* 2^^(2^n) (mod n), in Knuth's up-arrow notation *); Array[f, 72]
(* Second program: *)
a[n_] := Module[{phin, F, L, U},
phin = EulerPhi[n];
If[phin == 2^Floor@Log2[phin],
F = FactorInteger[n];
L = Power @@@ F;
U = Table[If[F[[i, 1]] == 2, 0, 1], {i, 1, Length[F]}];
ChineseRemainder[U, L],
(2^a[phin])~Mod~n]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 03 2023, after Robert Israel *)
PROG
(Sage)
def tower2mod(n):
if ( n <= 22 ):
return 65536%n
else:
ep = euler_phi(n)
return power_mod(2, ep+tower2mod(ep), n)
(Haskell)
import Math.NumberTheory.Moduli (powerMod)
a245970 n = powerMod 2 (phi + a245970 phi) n
where phi = a000010 n
-- Reinhard Zumkeller, Feb 01 2015
(PARI) a(n)=if(n<3, return(0)); my(e=valuation(n, 2), k=n>>e); lift(chinese(Mod(2, k)^a(eulerphi(k)), Mod(0, 2^e))) \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
Sequence in context: A328819 A330578 A355289 * A197813 A200496 A058546
KEYWORD
nonn,easy,nice,look
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 18:17 EDT 2024. Contains 371962 sequences. (Running on oeis4.)