The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A204531 Expansion of phi(q) * phi(-q^4) in powers of q where phi() is a Ramanujan theta function. 5
 1, 2, 0, 0, 0, -4, 0, 0, -4, 2, 0, 0, 0, -4, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, -4, 0, 0, -8, 4, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, -8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^2)^5 / (eta(q)^2 * eta(q^8)) in powers of q. Euler transform of period 8 sequence [ 2, -3, 2, -3, 2, -3, 2, -2, ...]. G.f.: Product_{k>0} (1 - x^(2*k))^5 / ((1 - x^k)^2 * (1 - x^(8*k))). a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0. a(8*n) = A104794(n). a(4*n + 1) = 2 * A134343(n). a(n) = (-1)^n * A246950(n). a(8*n + 1) = 2 * A113407(n). a(8*n + 5) = -4 * A053692(n). - Michael Somos, Jun 10 2015 EXAMPLE G.f. = 1 + 2*q - 4*q^5 - 4*q^8 + 2*q^9 - 4*q^13 + 4*q^16 + 4*q^17 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^4], {q, 0, n}]; (* Michael Somos, Jun 10 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^8 + A)), n))}; (PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * (-1)^(n%8==5) * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 2 * (e>2) * (-1)^(e<4), p%4==1, e+1, !(e%2))))}; CROSSREFS Cf. A053692, A104794, A113407, A134343, A246950. Sequence in context: A127391 A262162 A246950 * A113277 A114855 A221381 Adjacent sequences:  A204528 A204529 A204530 * A204532 A204533 A204534 KEYWORD sign AUTHOR Michael Somos, Jan 15 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 12:49 EDT 2022. Contains 354097 sequences. (Running on oeis4.)