login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372373
Coefficient of x^n in the expansion of ( (1+x+x^3)^3 / (1+x)^2 )^n.
2
1, 1, 1, 10, 37, 91, 334, 1366, 4645, 15967, 59951, 220782, 792946, 2906554, 10770082, 39629440, 145966549, 540943231, 2006762563, 7443051014, 27661527427, 102980882455, 383639407570, 1430429881122, 5339465251426, 19947662875216, 74573064834646
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n,k) * binomial(n-k,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1+x)^2 / (1+x+x^3)^3 ). See A372377.
PROG
(PARI) a(n, s=3, t=3, u=-2) = sum(k=0, n\s, binomial(t*n, k)*binomial((t+u)*n-k, n-s*k));
CROSSREFS
Cf. A372377.
Sequence in context: A212795 A227695 A247792 * A096000 A047672 A200872
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 29 2024
STATUS
approved