login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227693
Integer nearest to (F[2n+1](S(n)))^2, where F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see coefficients A, B, C(i) in comments).
5
4, 25, 168, 1229, 9595, 78527, 664408, 5759130, 50833725, 455019102, 4118498801, 37616575907, 346165453783, 3205869110911, 29851888456753, 279286334215803, 2623780688311969, 24739953477533166, 234041108830344356, 2220562531262307905, 21124612016460745383, 201448482556532026684, 1925296277838503159171, 18437832696789559015711, 176901280909820032014422
OFFSET
1,1
COMMENTS
Coefficients are A= 0.1641239, B= 10.0861, C(0)=0 .9976796712309498, C(1)= 7.445960495e-02, C(2)= -6.73751166802e-03.
This sequence gives a good approximation of pi(10^n) (A006880); see (A227694).
To obtain this sequence, remark first that the square root of the first values of pi(10^n) (A006880) (see (A221205)) are close to odd indices Fibonacci numbers F[2n+1](1). Switching to odd indices Fibonacci polynomials F[2n+1](x), one obtains the sequence a(n) by computing x as a function of n such that (F[2n+1](x))^2 fit the values of pi(10^n) for 1<=n<=25.
FORMULA
a(n) = round((F[2n+1](Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i))))^2).
EXAMPLE
For n =1, F[3](x) = x^2+1; replace x by Sum_{i=0..2} (C(i)*(log(log(A*(B+1))))^(2i))= 1.016825… to obtain a(1)= round((F[3]( 1.016825…))^2)=4.
MAPLE
with(combinat, fibonacci): A:= 0.1641239: B:= 10.0861: C(0):= .9976796712309498: C(1):=7.445960495E-02: C(2):= -6.73751166802E-03: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^(2*i), i=0..2): seq(round(fibonacci(2*n+1, c(n))^2), n=1..25);
CROSSREFS
Sequence in context: A225137 A229255 A006880 * A175255 A081068 A163072
KEYWORD
nonn
AUTHOR
Vladimir Pletser, Jul 19 2013
STATUS
approved