login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215005
a(n) = a(n-2) + a(n-1) + floor(n/2) + 1 for n > 1 and a(0)=0, a(1)=1.
2
0, 1, 3, 6, 12, 21, 37, 62, 104, 171, 281, 458, 746, 1211, 1965, 3184, 5158, 8351, 13519, 21880, 35410, 57301, 92723, 150036, 242772, 392821, 635607, 1028442, 1664064, 2692521, 4356601, 7049138, 11405756, 18454911, 29860685, 48315614, 78176318, 126491951, 204668289
OFFSET
0,3
COMMENTS
If the seed is {1,1}: 1, 1, 4, 7, 14, 24, 42, 70, 117, 192, 315, 513, 835, 1355, 2198, 3561, 5768, 9338, 15116, 24464, 39591, 64066, 103669, 167747, ...
If the seed is {1,2}: A129696.
Same seed, but -1 in the formula instead of +1: b(n)=a(n-2)+1 for n>=2, i.e. 0, 1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 172, 282, 459, 747, 1212, 1966, 3185, 5159, 8352, 13520, 21881, 35411, 57302, 92724, 150037, 242773, 392822, ...
FORMULA
a(n) = 2*Fibonacci(n+2) - (2*n + 9 - (-1)^n)/4. - Vaclav Kotesovec, Aug 11 2012
From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: x*(1+x-x^2) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
E.g.f.: 2*exp(x/2)*(cosh(sqrt(5)*x/2) + (3/sqrt(5))*sinh(sqrt(5)*x/2)) - (1/2)*((x+4)*cosh(x) + (x+5)*sinh(x)). - G. C. Greubel, Apr 05 2024
MATHEMATICA
LinearRecurrence[{2, 1, -3, 0, 1}, {0, 1, 3, 6, 12}, 39] (* Jean-François Alcover, Oct 05 2017 *)
PROG
(Python)
prpr = 0
prev = 1
for n in range(2, 100):
print(prpr, end=', ')
curr = prpr+prev + 1 + n//2
prpr = prev
prev = curr
(PARI) concat(0, Vec(x*(1+x-x^2)/((1-x)^2*(1+x)*(1-x-x^2)) + O(x^100))) \\ Colin Barker, Sep 16 2015
(Magma) [2*Fibonacci(n+2) -(2*n+9-(-1)^n)/4: n in [0..50]]; // G. C. Greubel, Apr 05 2024
(SageMath) [2*fibonacci(n+2) -(n+4+(n%2))//2 for n in range(51)] # G. C. Greubel, Apr 05 2024
CROSSREFS
Cf. A129696 (same formula, seed {1,2}).
Cf. A000071 (a(n+1) = a(n-1) + a(n) + 1).
Cf. A000045.
Sequence in context: A162920 A247662 A337462 * A006330 A293636 A087503
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Jul 31 2012
STATUS
approved