OFFSET
0,3
COMMENTS
If the seed is {1,1}: 1, 1, 4, 7, 14, 24, 42, 70, 117, 192, 315, 513, 835, 1355, 2198, 3561, 5768, 9338, 15116, 24464, 39591, 64066, 103669, 167747, ...
If the seed is {1,2}: A129696.
Same seed, but -1 in the formula instead of +1: b(n)=a(n-2)+1 for n>=2, i.e. 0, 1, 1, 2, 4, 7, 13, 22, 38, 63, 105, 172, 282, 459, 747, 1212, 1966, 3185, 5159, 8352, 13520, 21881, 35411, 57302, 92724, 150037, 242773, 392822, ...
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,1,-3,0,1).
FORMULA
a(n) = 2*Fibonacci(n+2) - (2*n + 9 - (-1)^n)/4. - Vaclav Kotesovec, Aug 11 2012
From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: x*(1+x-x^2) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
E.g.f.: 2*exp(x/2)*(cosh(sqrt(5)*x/2) + (3/sqrt(5))*sinh(sqrt(5)*x/2)) - (1/2)*((x+4)*cosh(x) + (x+5)*sinh(x)). - G. C. Greubel, Apr 05 2024
MATHEMATICA
LinearRecurrence[{2, 1, -3, 0, 1}, {0, 1, 3, 6, 12}, 39] (* Jean-François Alcover, Oct 05 2017 *)
PROG
(Python)
prpr = 0
prev = 1
for n in range(2, 100):
print(prpr, end=', ')
curr = prpr+prev + 1 + n//2
prpr = prev
prev = curr
(PARI) concat(0, Vec(x*(1+x-x^2)/((1-x)^2*(1+x)*(1-x-x^2)) + O(x^100))) \\ Colin Barker, Sep 16 2015
(Magma) [2*Fibonacci(n+2) -(2*n+9-(-1)^n)/4: n in [0..50]]; // G. C. Greubel, Apr 05 2024
(SageMath) [2*fibonacci(n+2) -(n+4+(n%2))//2 for n in range(51)] # G. C. Greubel, Apr 05 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Jul 31 2012
STATUS
approved