login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215004
a(0) = a(1) = 1; for n>1, a(n) = a(n-1) + a(n-2) + floor(n/2).
3
1, 1, 3, 5, 10, 17, 30, 50, 84, 138, 227, 370, 603, 979, 1589, 2575, 4172, 6755, 10936, 17700, 28646, 46356, 75013, 121380, 196405, 317797, 514215, 832025, 1346254, 2178293, 3524562, 5702870, 9227448, 14930334, 24157799, 39088150, 63245967, 102334135, 165580121
OFFSET
0,3
COMMENTS
If the first two terms are {0,1}, we get A020956 except for the first term.
If the first two terms are {1,2}, we get A281362.
LINKS
Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
FORMULA
From Colin Barker, Sep 16 2015: (Start)
a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5) for n>4.
G.f.: (1-x+x^3) / ((1-x)^2*(1+x)*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) - floor((n+3)/2). - Nathan Fox, Jan 27 2017
a(n) = (-3/4 + (-1)^n/4 + (2^(-n)*((1-t)^n*(-2+t) + (1+t)^n*(2+t)))/t + (-1-n)/2) where t=sqrt(5). - Colin Barker, Feb 09 2017
From G. C. Greubel, Apr 05 2024: (Start)
a(n) = Fibonacci(n+3) - (1/4)*(2*n + 5 - (-1)^n).
E.g.f.: 2*exp(x/2)*( cosh(sqrt(5)*x/2) + (2/sqrt(5))*sinh(sqrt(5)*x/2) ) - (1/2)*( (x+2)*cosh(x) + (x+3)*sinh(x) ). (End)
MATHEMATICA
Table[((-1)^n - 2 n + 8 Fibonacci[n] + 4 LucasL[n] - 5)/4, {n, 0, 20}] (* Vladimir Reshetnikov, May 18 2016 *)
RecurrenceTable[{a[0]==a[1]==1, a[n]==a[n-1]+a[n-2]+Floor[n/2]}, a, {n, 40}] (* or *) LinearRecurrence[{2, 1, -3, 0, 1}, {1, 1, 3, 5, 10}, 40] (* Harvey P. Dale, Jul 11 2020 *)
PROG
(Python)
prpr = prev = 1
for n in range(2, 100):
print(prpr, end=', ')
curr = prpr+prev + n//2
prpr = prev
prev = curr
(PARI) Vec(-(x^3-x+1)/((x-1)^2*(x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2015
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; 1, 0, -3, 1, 2]^n* [1; 1; 3; 5; 10])[1, 1] \\ Charles R Greathouse IV, Jan 16 2017
(Magma) [Fibonacci(n+3)-(2*n+5-(-1)^n)/4: n in [0..40]]; // _G. C. Greubel, Feb 01 2018
(SageMath) [fibonacci(n+3) -(n+2+(n%2))//2 for n in range(41)] # G. C. Greubel, Apr 05 2024
CROSSREFS
Cf. A020956, except for first term: same formula, seed {0,1}.
Sequence in context: A270415 A192757 A079934 * A005403 A018072 A090170
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Jul 31 2012
STATUS
approved