login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A319453 Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 14
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

FORMULA

T(n,k) = [x^n y^k] 1/Product_{j>=2} (1-y*x^A002113(j)).

Sum_{k=0..3} T(n,k) = A261132(n).

EXAMPLE

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1, 1;

  0, 1, 1,  1;

  0, 1, 2,  1,  1;

  0, 1, 2,  2,  1,  1;

  0, 1, 3,  3,  2,  1,  1;

  0, 1, 3,  4,  3,  2,  1, 1;

  0, 1, 4,  5,  5,  3,  2, 1, 1;

  0, 1, 4,  7,  6,  5,  3, 2, 1, 1;

  0, 0, 5,  8,  9,  7,  5, 3, 2, 1, 1;

  0, 1, 4, 10, 11, 10,  7, 5, 3, 2, 1, 1;

  0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1;

MAPLE

p:= proc(n) option remember; local i, s; s:= ""||n;

      for i to iquo(length(s), 2) do if

        s[i]<>s[-i] then return false fi od; true

    end:

h:= proc(n) option remember; `if`(n<1, 0,

     `if`(p(n), n, h(n-1)))

    end:

b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,

      b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))):

seq(T(n), n=0..14);

CROSSREFS

Columns k=0-10 give: A000007, A136522 (for n>0), A319468, A261131, A319469, A319470, A319471, A319472, A319473, A319474, A319475.

Row sums give A091580.

T(2n,n) gives A319454.

Cf. A002113, A261132.

Sequence in context: A054078 A029400 A069713 * A072233 A264391 A116598

Adjacent sequences:  A319450 A319451 A319452 * A319454 A319455 A319456

KEYWORD

nonn,tabl,base

AUTHOR

Alois P. Heinz, Sep 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 22:09 EDT 2020. Contains 336214 sequences. (Running on oeis4.)