login
A319453
Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1
OFFSET
0,13
COMMENTS
Differs from A008284 and from A072233 first at T(10,1) = 0.
LINKS
FORMULA
T(n,k) = [x^n y^k] 1/Product_{j>=2} (1-y*x^A002113(j)).
Sum_{k=0..3} T(n,k) = A261132(n).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 1, 1;
0, 1, 2, 2, 1, 1;
0, 1, 3, 3, 2, 1, 1;
0, 1, 3, 4, 3, 2, 1, 1;
0, 1, 4, 5, 5, 3, 2, 1, 1;
0, 1, 4, 7, 6, 5, 3, 2, 1, 1;
0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1;
0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1;
0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1;
...
MAPLE
p:= proc(n) option remember; local i, s; s:= ""||n;
for i to iquo(length(s), 2) do if
s[i]<>s[-i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))):
seq(T(n), n=0..14);
CROSSREFS
Columns k=0-10 give: A000007, A136522 (for n>0), A319468, A261131, A319469, A319470, A319471, A319472, A319473, A319474, A319475.
Row sums give A091580.
T(2n,n) gives A319454.
Sequence in context: A370173 A344612 A069713 * A072233 A264391 A116598
KEYWORD
nonn,tabl,base
AUTHOR
Alois P. Heinz, Sep 19 2018
STATUS
approved