login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319456
a(n) = [x^n] Product_{k>=1} ((1 - x^k)*(1 - x^(2*k)))^n.
1
1, -1, -3, 14, -11, -81, 282, -57, -2043, 5405, 2417, -46476, 94522, 110512, -943407, 1505289, 2807589, -16888311, 23645199, 46006542, -265972791, 472882620, 187884672, -3981273597, 14234579226, -19187383356, -78662039004, 502118911904, -847583768679, -2627514175002
OFFSET
0,3
FORMULA
a(n) = [x^n] Product_{k>=1} (1 - x^(2*k))^(2*n)/(1 + x^k)^n.
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k).
MATHEMATICA
Table[SeriesCoefficient[Product[((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 29}]
Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - 4 DivisorSigma[1, k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 19 2018
STATUS
approved