login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002288 G.f.: q * Product_{m>=1} (1-q^m)^8*(1-q^2m)^8.
(Formerly M4483 N1898)
10
0, 1, -8, 12, 64, -210, -96, 1016, -512, -2043, 1680, 1092, 768, 1382, -8128, -2520, 4096, 14706, 16344, -39940, -13440, 12192, -8736, 68712, -6144, -34025, -11056, -50760, 65024, -102570, 20160, 227552, -32768, 13104, -117648, -213360, -130752, 160526, 319520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This is Glaisher's Theta(n). - N. J. A. Sloane, Nov 26 2018

Number 2 of the 74 eta-quotients listed in Table I of Martin (1996).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

J. W. L. Glaisher, On the representation of a number as a sum of 14 and 16 squares, Quart. J. Math. 38 (1907), 178-236 (see p. 198).

F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 p 133.

G. Shimura, Modular forms of half-integral weight, pp. 57-74 of Modular Functions of One Variable I (Antwerp 1972), Lect. Notes Math. 320 (1973).

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1002 terms from T. D. Noe)

T. Ishikawa, Congruences between binomial coefficients binom(2f,f) and Fourier coefficients of certain eta-products, Hiroshima Math. J. 22 (1992), no. 3, 583-590.

M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.

Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]

Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.

H Movasati, Y Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv preprint arXiv:1603.09411, 2016.

H.-G. Quebbemann, Lattices with theta-functions for G(sqrt(2)) and linear codes, J. Algebra, 105 (1987), 443-450.

Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers

Index entries for sequences mentioned by Glaisher

FORMULA

Expansion of cusp form (e(1)-e(2))(e(1)-e(3))(e(2)-e(3))^2 for GAMMA_0(2).

Expansion of q * psi(q)^8 * phi(-q)^8 in powers of q where psi(), phi() are Ramanujan theta functions. - Michael Somos, Dec 09 2013

Expansion of (eta(q) * eta(q^2))^8 in powers of q. - Michael Somos, Mar 18 2003

Euler transform of period 2 sequence [ -8, -16, ... ].

a(n) is multiplicative with a(2^e) = (-8)^e, a(p^e) = a(p) * a(p^(e-1)) - p^7 * a(p^(e-2)). - Michael Somos, Mar 08 2006

Given A = A0 + A1 + A2 + A3 is the 4-section, then 0 = A2^3 + 2 * A0 * (A1^2 + A3^2) - 4 * A1*A2*A3 - 3 * A0^2*A2. - Michael Somos, Mar 08 2006

G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 16 (t/i)^8 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 09 2013

a(2*n) = -8 * a(n). Convolution square of A030211. - Michael Somos, Apr 09 2013

G.f.: x*exp(8*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

EXAMPLE

G.f. = q - 8*q^2 + 12*q^3 + 64*q^4 - 210*q^5 - 96*q^6 + 1016*q^7 - 512*q^8 + ...

MAPLE

t1 := product((1-q^m)^8, m=1..40): subs(q=q^2, t1): series(q*t1*%, q, 40);

MATHEMATICA

max = 36; f[q_] := q*Product[(1-q^m)^8*(1-q^(2m))^8, {m, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-Fran├žois Alcover, Jul 18 2012 *)

a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^2])^8, {q, 0, n}]; (* Michael Somos, Apr 09 2013 *)

a[ n_] := SeriesCoefficient[(EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q^(1/2)] / 2)^8, {q, 0, n}]; (* Michael Somos, Dec 09 2013 *)

PROG

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^8, n))}; /* Michael Somos, Jul 16 2004 */

(PARI) q='q+O('q^50); concat(0, Vec((eta(q)*eta(q^2))^8)) \\ Altug Alkan, Sep 19 2018

(Sage) CuspForms( Gamma0(2), 8, prec=100).0; # Michael Somos, May 28 2013

(MAGMA) Basis( CuspForms( Gamma0(2), 8), 100) [1]; /* Michael Somos, Dec 09 2013 */

CROSSREFS

Cf. A030211.

Sequence in context: A069186 A166625 A038290 * A216711 A137232 A147764

Adjacent sequences:  A002285 A002286 A002287 * A002289 A002290 A002291

KEYWORD

sign,easy,nice,mult

AUTHOR

N. J. A. Sloane

EXTENSIONS

Extended, and better description added by N. J. A. Sloane, Jan 15 1996

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 21:51 EDT 2022. Contains 354830 sequences. (Running on oeis4.)