login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137232 a(n) = -a(n-1) + 7*a(n-2) + 3*a(n-3) with a(0) = a(1) = 0, a(2) = 1. 1
0, 0, 1, -1, 8, -12, 65, -125, 544, -1224, 4657, -11593, 40520, -107700, 356561, -988901, 3161728, -9014352, 28179745, -81795025, 252010184, -740036124, 2258722337, -6682944653, 20273892640, -60278338200, 182146752721, -543273442201, 1637465696648, -4893939533892, 14726379083825 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-1,7,3).

FORMULA

From R. J. Mathar, Mar 17 2008: (Start)

O.g.f.: x^2/((1+3*x)*(1-2*x-x^2)).

a(n) = ( (-3)^n + A135532(n) )/14. (End)

a(n) = -(1/28)*(1+sqrt(2))^n - (1/14)*sqrt(2)*(1-sqrt(2))^n + (1/14)*(-3)^n -(1/28)*(1-sqrt(2))^n + (1/14)*(1+sqrt(2))^n*sqrt(2), with n>=0 - Paolo P. Lava, Jun 09 2008

a(n) = (1/14)*( (-3)^n + 5*Pell(n) - Pell(n+1) ), where Pell(n) = A000129(n). - G. C. Greubel, Apr 19 2021

MATHEMATICA

Table[((-3)^n + 5*Fibonacci[n, 2] -Fibonacci[n+1, 2])/14, {n, 0, 40}] (* G. C. Greubel, Apr 19 2021 *)

LinearRecurrence[{-1, 7, 3}, {0, 0, 1}, 40] (* Harvey P. Dale, Apr 26 2022 *)

PROG

(Magma) I:=[0, 0, 1]; [n le 3 select I[n] else -Self(n-1) +7*Self(n-2) +3*Self(n-3): n in [1..36]]; // G. C. Greubel, Apr 19 2021

(Sage) [((-3)^n +5*lucas_number1(n, 2, -1) -lucas_number1(n+1, 2, -1))/14 for n in (0..40)] # G. C. Greubel, Apr 19 2021

CROSSREFS

Cf. A000129, A135532.

Sequence in context: A038290 A002288 A216711 * A147764 A226259 A162466

Adjacent sequences:  A137229 A137230 A137231 * A137233 A137234 A137235

KEYWORD

sign,easy

AUTHOR

Paul Curtz, Mar 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 19:50 EDT 2022. Contains 355084 sequences. (Running on oeis4.)