login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137232
a(n) = -a(n-1) + 7*a(n-2) + 3*a(n-3) with a(0) = a(1) = 0, a(2) = 1.
1
0, 0, 1, -1, 8, -12, 65, -125, 544, -1224, 4657, -11593, 40520, -107700, 356561, -988901, 3161728, -9014352, 28179745, -81795025, 252010184, -740036124, 2258722337, -6682944653, 20273892640, -60278338200, 182146752721, -543273442201, 1637465696648, -4893939533892, 14726379083825
OFFSET
0,5
FORMULA
From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: x^2/((1+3*x)*(1-2*x-x^2)).
a(n) = ( (-3)^n + A135532(n) )/14. (End)
a(n) = (1/14)*( (-3)^n + 5*Pell(n) - Pell(n+1) ), where Pell(n) = A000129(n). - G. C. Greubel, Apr 19 2021
MATHEMATICA
Table[((-3)^n + 5*Fibonacci[n, 2] -Fibonacci[n+1, 2])/14, {n, 0, 40}] (* G. C. Greubel, Apr 19 2021 *)
LinearRecurrence[{-1, 7, 3}, {0, 0, 1}, 40] (* Harvey P. Dale, Apr 26 2022 *)
PROG
(Magma) I:=[0, 0, 1]; [n le 3 select I[n] else -Self(n-1) +7*Self(n-2) +3*Self(n-3): n in [1..36]]; // G. C. Greubel, Apr 19 2021
(Sage) [((-3)^n +5*lucas_number1(n, 2, -1) -lucas_number1(n+1, 2, -1))/14 for n in (0..40)] # G. C. Greubel, Apr 19 2021
CROSSREFS
Sequence in context: A038290 A002288 A216711 * A147764 A226259 A162466
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Mar 08 2008
STATUS
approved