login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222713
Least number k such that n divides gcd(sigma(k), phi(k)) (A009223).
3
1, 3, 14, 12, 88, 14, 116, 15, 190, 88, 989, 35, 477, 116, 209, 105, 6901, 190, 7067, 88, 196, 989, 6439, 35, 15049, 477, 2754, 172, 10207, 209, 4976, 336, 989, 6901, 1189, 190, 10877, 7067, 477, 248, 13529, 377, 44461, 989, 418, 6439, 79523, 105, 10244, 15049
OFFSET
1,2
COMMENTS
For each n there are infinitely many numbers k for which n divides sigma(k) and phi(k). - Marius A. Burtea, Mar 28 2019
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (terms 1-388 from Marius A. Burtea, 389-2808 from David A. Corneth)
EXAMPLE
Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ...
1 first divides A009223(1); 2 first divides A009223(3); 3 first divides A009223(14)=6.
MATHEMATICA
Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i], #] != 0, i++]; i] &, 50] (* Michael De Vlieger, Mar 28 2019 *)
PROG
(PARI) a(n)={my(k=1); while(gcd(sigma(k), eulerphi(k))%n!=0, k++); k}
(Magma) [Min([n: n in [1..300000] | IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) ]): m in [1..70]]; // Marius A. Burtea, Mar 28 2019
(Magma) v:=[];
for n in [1..60] do
m:=1;
while not EulerPhi(m) mod n eq 0 or not SumOfDivisors(m) mod n eq 0 do
v[n]:=0;
m:=m+1;
end while;
v[n]:=m;
end for;
v; // Marius A. Burtea, Mar 30 2019
CROSSREFS
Sequence in context: A291796 A155886 A319456 * A138959 A171653 A055435
KEYWORD
nonn,changed
AUTHOR
Phil Carmody, Mar 01 2013
STATUS
approved