login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222710
Total number of parts of multiplicity 10 in all partitions of n.
2
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 15, 22, 26, 37, 45, 61, 74, 99, 120, 158, 192, 247, 300, 382, 463, 582, 705, 877, 1059, 1309, 1575, 1931, 2319, 2823, 3381, 4094, 4886, 5886, 7007, 8401, 9971, 11905, 14090, 16756, 19781, 23436, 27594, 32586, 38268, 45050
OFFSET
10,5
LINKS
FORMULA
G.f.: (x^10/(1-x^10)-x^11/(1-x^11))/Product_{j>0}(1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (220*Pi*sqrt(2*n)). - Vaclav Kotesovec, May 24 2018
MAPLE
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=10, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=10..60);
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 10, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 10, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A197126.
Sequence in context: A206560 A035554 A183567 * A032278 A222738 A005308
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 28 2013
STATUS
approved