login
A197126
Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of cliques of size k in all partitions of n.
13
1, 1, 1, 3, 0, 1, 4, 2, 0, 1, 8, 2, 1, 0, 1, 11, 4, 2, 1, 0, 1, 19, 5, 3, 1, 1, 0, 1, 26, 10, 3, 3, 1, 1, 0, 1, 41, 11, 7, 3, 2, 1, 1, 0, 1, 56, 20, 8, 5, 3, 2, 1, 1, 0, 1, 83, 25, 13, 6, 5, 2, 2, 1, 1, 0, 1, 112, 38, 17, 11, 5, 5, 2, 2, 1, 1, 0, 1, 160, 49, 25, 13, 9, 5, 4, 2, 2, 1, 1, 0, 1
OFFSET
1,4
COMMENTS
All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.
LINKS
Abdulaziz M. Alanazi and Augustine O. Munagi, On partition configurations of Andrews-Deutsch, Integers 17 (2017), #A7.
FORMULA
G.f. of column k: (x^k/(1-x^k)-x^(k+1)/(1-x^(k+1)))/Product_{j>0}(1-x^j).
Column k is asymptotic to exp(Pi*sqrt(2*n/3)) / (k*(k+1)*Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, May 24 2018
EXAMPLE
T(4,1) = 4: [1,1,(2)], [(1),(3)], [(4)].
T(8,3) = 3: [1,1,(2,2,2)], [(1,1,1),2,3], [(1,1,1),5].
T(12,4) = 11: [(1,1,1,1),(2,2,2,2)], [1,(2,2,2,2),3], [(1,1,1,1),2,3,3], [(3,3,3,3)], [(1,1,1,1),2,2,4], [(2,2,2,2),4], [(1,1,1,1),4,4], [(1,1,1,1),3,5], [(1,1,1,1),2,6], [(1,1,1,1),8]. Here the first partition contains 2 cliques.
Triangle begins:
1;
1, 1;
3, 0, 1;
4, 2, 0, 1;
8, 2, 1, 0, 1;
11, 4, 2, 1, 0, 1;
19, 5, 3, 1, 1, 0, 1;
26, 10, 3, 3, 1, 1, 0, 1;
...
MAPLE
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))
end:
T:= (n, k)-> b(n, n, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..20);
MATHEMATICA
Table[CoefficientList[ 1/q* Tr[Flatten[q^Map[Length, Split /@ IntegerPartitions[n], {2}]]], q], {n, 24}] (* Wouter Meeussen, Apr 21 2012 *)
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == k, l + {0, l[[1]]}, l]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
Row sums give: A000070(n-1). Diagonal gives: A000012. Limit of reversed rows: T(2*n+1,n+1) = A002865(n).
Cf. A213180.
Sequence in context: A245120 A226912 A177330 * A256987 A048963 A119458
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 10 2011
STATUS
approved