OFFSET
1,4
COMMENTS
All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Abdulaziz M. Alanazi and Augustine O. Munagi, On partition configurations of Andrews-Deutsch, Integers 17 (2017), #A7.
FORMULA
G.f. of column k: (x^k/(1-x^k)-x^(k+1)/(1-x^(k+1)))/Product_{j>0}(1-x^j).
Column k is asymptotic to exp(Pi*sqrt(2*n/3)) / (k*(k+1)*Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, May 24 2018
EXAMPLE
T(4,1) = 4: [1,1,(2)], [(1),(3)], [(4)].
T(8,3) = 3: [1,1,(2,2,2)], [(1,1,1),2,3], [(1,1,1),5].
T(12,4) = 11: [(1,1,1,1),(2,2,2,2)], [1,(2,2,2,2),3], [(1,1,1,1),2,3,3], [(3,3,3,3)], [(1,1,1,1),2,2,4], [(2,2,2,2),4], [(1,1,1,1),4,4], [(1,1,1,1),3,5], [(1,1,1,1),2,6], [(1,1,1,1),8]. Here the first partition contains 2 cliques.
Triangle begins:
1;
1, 1;
3, 0, 1;
4, 2, 0, 1;
8, 2, 1, 0, 1;
11, 4, 2, 1, 0, 1;
19, 5, 3, 1, 1, 0, 1;
26, 10, 3, 3, 1, 1, 0, 1;
...
MAPLE
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))
end:
T:= (n, k)-> b(n, n, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..20);
MATHEMATICA
Table[CoefficientList[ 1/q* Tr[Flatten[q^Map[Length, Split /@ IntegerPartitions[n], {2}]]], q], {n, 24}] (* Wouter Meeussen, Apr 21 2012 *)
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == k, l + {0, l[[1]]}, l]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 10 2011
STATUS
approved