The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197125 Numbers such that sum of digits and sum of the square of digits are both a square. 2
 1, 4, 9, 10, 40, 90, 100, 400, 900, 1000, 1111, 1177, 1224, 1242, 1339, 1393, 1422, 1717, 1771, 1933, 2124, 2142, 2214, 2241, 2412, 2421, 3139, 3193, 3319, 3391, 3913, 3931, 4000, 4122, 4212, 4221, 4444, 4588, 4669, 4696, 4858, 4885, 4966, 5488, 5848, 5884 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence contains a majority of numbers with two identical digits at least, but there exists a finite subset A = {1, 4, 9, 10, 40, 90, 156789, 156798, ..., 9876510} of 7!+6 = 5046 numbers with distinct decimal digits. The numbers > 90 of A are all permutations of 1567890. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 FORMULA a(n) = {A028839} intersection {A175396}. EXAMPLE 597618 is in the sequence because : 5+9+7+6+1+8 = 36 = 6^2 ; 5^2+9^2+7^2+6^2+1^2+8^2 = 256 = 16^2. MAPLE for n from 1 to 6000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10): n0:=v :s1:=s1+u:s2:=s2+u^2: od:if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) then printf(`%d, `, n): else fi:od: MATHEMATICA sdQ[n_]:=Module[{idn=IntegerDigits[n]}, IntegerQ[Sqrt[Total[idn]]] && IntegerQ[Sqrt[Total[idn^2]]]]; Select[Range[6000], sdQ] (* Harvey P. Dale, Oct 25 2011 *) CROSSREFS Cf. A028839, A175396. Sequence in context: A102985 A112401 A178360 * A197129 A115688 A115710 Adjacent sequences: A197122 A197123 A197124 * A197126 A197127 A197128 KEYWORD nonn,base AUTHOR Michel Lagneau, Oct 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 22:08 EDT 2023. Contains 361511 sequences. (Running on oeis4.)