login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117524 Total number of parts of multiplicity 3 in all partitions of n. 4
0, 0, 1, 0, 1, 2, 3, 3, 7, 8, 13, 17, 25, 32, 48, 59, 83, 108, 145, 183, 247, 310, 406, 512, 659, 824, 1055, 1307, 1651, 2047, 2558, 3146, 3913, 4788, 5904, 7202, 8821, 10707, 13054, 15770, 19118, 23027, 27775, 33312, 40029, 47835, 57231, 68182, 81261 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

G.f. for total number of parts of multiplicity m in all partitions of n is (x^m/(1-x^m)-x^(m+1)/(1-x^(m+1)))/Product(1-x^i,i=1..infinity).

a(n) = Sum(k*A118806(n,k), k>=0). - Emeric Deutsch, Apr 29 2006

EXAMPLE

a(9) = 7 because among the 30 (=A000041(9)) partitions of 9 only [6,(1,1,1)],[4,2,(1,1,1)],[(3,3,3)],[3,3,(1,1,1)],[3,(2,2,2)],[(2,2,2),(1,1,1)] contain parts of multiplicity 3 and their total number is 7 (shown between parentheses)

MAPLE

g:=(x^3/(1-x^3)-x^4/(1-x^4))/product(1-x^i, i=1..65): gser:=series(g, x=0, 62): seq(coeff(gser, x, n), n=1..58); # Emeric Deutsch, Apr 29 2006

CROSSREFS

Cf. A024786, A116646. Column k=3 of A197126.

Sequence in context: A222294 A181850 A062761 * A045683 A157531 A155755

Adjacent sequences:  A117521 A117522 A117523 * A117525 A117526 A117527

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Apr 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 01:12 EST 2016. Contains 278694 sequences.