The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A222704 Total number of parts of multiplicity 4 in all partitions of n. 2
 1, 0, 1, 1, 3, 3, 5, 6, 11, 13, 20, 24, 37, 45, 64, 80, 110, 137, 184, 229, 303, 375, 486, 602, 772, 951, 1202, 1478, 1853, 2267, 2817, 3432, 4236, 5142, 6300, 7620, 9284, 11185, 13553, 16273, 19625, 23478, 28187, 33613, 40192, 47778, 56904, 67443, 80051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 4..1000 FORMULA G.f.: (x^4/(1-x^4)-x^5/(1-x^5))/Product_{j>0}(1-x^j). a(n) ~ exp(Pi*sqrt(2*n/3)) / (40*Pi*sqrt(2*n)). - Vaclav Kotesovec, May 24 2018 MAPLE b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0], add((l->`if`(m=4, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p))) end: a:= n-> b(n, n)[2]: seq(a(n), n=4..60); MATHEMATICA b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m == 4, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *) CROSSREFS Column k=4 of A197126. Sequence in context: A276434 A183561 A300183 * A095950 A089874 A092035 Adjacent sequences: A222701 A222702 A222703 * A222705 A222706 A222707 KEYWORD nonn AUTHOR Alois P. Heinz, Feb 28 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 14:41 EDT 2024. Contains 372861 sequences. (Running on oeis4.)