login
A182716
Number of 2's in all partitions of 2n that do not contain 1 as a part.
1
0, 1, 2, 4, 8, 15, 27, 48, 82, 137, 225, 362, 572, 892, 1370, 2078, 3117, 4624, 6791, 9885, 14263, 20416, 29007, 40921, 57345, 79864, 110565, 152211, 208435, 283982, 385048, 519695, 698346, 934477, 1245439, 1653485, 2187108, 2882686, 3786497, 4957324, 6469625
OFFSET
0,3
LINKS
Marco Baggio, Vasilis Niarchos, Kyriakos Papadodimas, and Gideon Vos, Large-N correlation functions in N = 2 superconformal QCD, arXiv preprint arXiv:1610.07612 [hep-th], 2016.
MAPLE
b:= proc(n, i) option remember; local r;
if n<=0 or i<2 then 0
elif i=2 then `if`(irem(n, 2, 'r')=0, r, 0)
else b(n, i-1) +b(n-i, i)
fi
end:
a:= n-> b(2*n, 2*n):
seq(a(n), n=0..40); # Alois P. Heinz, Dec 03 2010
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{q, r}, Which[n <= 0 || i<2, 0, i==2, {q, r} = QuotientRemainder[n, 2]; If[r==0, q, 0], True, b[n, i-1]+b[n-i, i]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A182742. Bisection of A182712.
Sequence in context: A222152 A000126 A344611 * A143281 A098057 A289692
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 03 2010
EXTENSIONS
More terms from Alois P. Heinz, Dec 03 2010
STATUS
approved