login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143282
Number of binary words of length n containing at least one subword 1001 and no subwords 10^{i}1 with i<2.
2
0, 0, 0, 0, 1, 2, 3, 5, 9, 15, 24, 38, 60, 94, 146, 225, 345, 527, 802, 1216, 1838, 2771, 4168, 6256, 9372, 14016, 20929, 31208, 46476, 69133, 102726, 152494, 226171, 335169, 496320, 734440, 1086102, 1605187, 2371049, 3500522, 5165573, 7619251
OFFSET
0,6
LINKS
FORMULA
G.f.: x^4/((x^3+x-1)*(x^4+x-1)).
a(n) = A000930(n+2) - A003269(n+4).
EXAMPLE
a(7) = 5 because 5 binary words of length 7 have at least one subword 1001 and no subwords 11 or 101: 0001001, 0010010, 0100100, 1001000, 1001001.
MAPLE
a:= n-> (Matrix (7, (i, j)-> `if` (i=j-1, 1, `if` (i=7, [-1, 0, -1, 0, 1, -1, 2][j], 0)))^n. <<(0$6), 1>>)[3, 1]: seq (a(n), n=0..50);
MATHEMATICA
CoefficientList[Series[x^4/((x^3+x-1)*(x^4+x-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 29 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec(x^4/((x^3+x-1)*(x^4+x-1)))) \\ G. C. Greubel, Apr 29 2017
CROSSREFS
Cf. A000930, A003269, 2nd column of A143291.
Sequence in context: A350607 A074693 A147322 * A323475 A097083 A268709
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 04 2008
STATUS
approved