OFFSET
2,2
COMMENTS
T(n,k) = number of subset S of {1,2,...,n+1} such that |S| > 1 and min(S*) = k, where S* is the set {x(2)-x(1), x(3)-x(2), ..., x(h+1)-x(h)} when the elements of S are written as x(1) < x(2) < ... < x(h+1); if max(S*) is used in place of min(S*), the result is the array at A255874. - Clark Kimberling, Mar 08 2015
LINKS
Alois P. Heinz, Rows n = 2..142, flattened
FORMULA
G.f. of column k: x^(k+2) / ((x^(k+1)+x-1)*(x^(k+2)+x-1)).
EXAMPLE
T (5,1) = 4, because there are 4 words of length 5 containing at least one subword 101 and no subword 11: 00101, 01010, 10100, 10101.
Triangle begins:
1;
3, 1;
8, 2, 1;
19, 4, 2, 1;
43, 8, 3, 2, 1;
94, 15, 5, 3, 2, 1;
201, 27, 9, 4, 3, 2, 1;
423, 48, 15, 6, 4, 3, 2, 1;
MAPLE
as:= proc (n, k) option remember;
if k=0 then 2^n
elif n<=k and n>=0 then n+1
elif n>0 then as(n-1, k) +as(n-k-1, k)
else as(n+1+k, k) -as(n+k, k)
fi
end:
T:= (n, k)-> as(n, k) -as(n, k+1):
seq(seq(T(n, k), k=0..n-2), n=2..15);
MATHEMATICA
as[n_, k_] := as[n, k] = Which[ k == 0, 2^n, n <= k && n >= 0, n+1, n > 0, as[n-1, k] + as[n-k-1, k], True, as[n+1+k, k] - as[n+k, k] ]; t [n_, k_] := as[n, k] - as[n, k+1]; Table[Table[t[n, k], {k, 0, n-2}], {n, 2, 14}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 04 2008
STATUS
approved