login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143287
Number of binary words of length n containing at least one subword 10^{7}1 and no subwords 10^{i}1 with i<7.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 14, 20, 28, 38, 50, 64, 80, 99, 123, 155, 198, 255, 329, 423, 540, 684, 861, 1080, 1354, 1700, 2139, 2696, 3400, 4285, 5392, 6772, 8490, 10630, 13300, 16637, 20812, 26036, 32568, 40726, 50902, 63582, 79372
OFFSET
0,11
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: x^9/((x^8+x-1)*(x^9+x-1)).
a(n) = A005710(n+7)-A005711(n+7).
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - a(n-10) - a(n-17). - Vincenzo Librandi, Jun 05 2013
EXAMPLE
a(10)=2 because 2 binary words of length 10 have at least one subword 10^{7}1 and no subwords 10^{i}1 with i<7: 0100000001, 1000000010.
MAPLE
a:= n-> coeff(series(x^9/((x^8+x-1)*(x^9+x-1)), x, n+1), x, n):
seq(a(n), n=0..60);
MATHEMATICA
CoefficientList[Series[x^9 / ((x^8 + x - 1) (x^9 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 04 2013 *)
PROG
(Magma) [n le 9 select 0 else n le 17 select n-9 else 2*Self(n-1)-Self(n-2) +Self(n-8)-Self(n-10)-Self(n-17): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013
CROSSREFS
Cf. A005710, A005711, 7th column of A143291.
Sequence in context: A322799 A218550 A127273 * A271952 A033073 A369406
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 04 2008
STATUS
approved