login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005711 a(n) = a(n-1) + a(n-9) for n >= 9; a(n) = 1 for n=0..7; a(8) = 2.
(Formerly M0479)
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 54, 64, 76, 91, 110, 134, 164, 201, 246, 300, 364, 440, 531, 641, 775, 939, 1140, 1386, 1686, 2050, 2490, 3021, 3662, 4437, 5376, 6516, 7902, 9588, 11638, 14128, 17149, 20811, 25248 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

a(n+7) equals the number of binary words of length n having at least 8 zeros between every two successive ones. - Milan Janjic, Feb 09 2015

a(n) is the number of compositions of n+1 into parts 1 and 9. - Joerg Arndt, May 19 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5

R. K. Guy, Letter to N. J. A. Sloane with attachment, 1988

D. Kleitman, Solution to Problem E3274, Amer. Math. Monthly, 98 (1991), 958-959.

Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.

D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 382

Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 1).

FORMULA

G.f.: (1+x^8)/(1-x-x^9).

For positive integers n and k such that k <= n <= 9*k, and 8 divides n-k, define c(n,k) = binomial(k,(n-k)/8), and c(n,k) = 0, otherwise. Then, for n>= 1, a(n-1) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011

MAPLE

A005711:=-(1+z**8)/(-1+z+z**9); # Simon Plouffe in his 1992 dissertation

ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, b))), X = Sequence(b, card >= 8)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=9..65); # Zerinvary Lajos, Mar 26 2008

M:= Matrix(9, (i, j)-> if j=1 and member(i, [1, 9]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n+1))[1, 1]; seq(a(n), n=0..60); # Alois P. Heinz, Jul 27 2008

MATHEMATICA

CoefficientList[Series[(1+x^8)/(1-x-x^9), {x, 0, 57}], x] (* Michael De Vlieger, May 20 2018 *)

PROG

(PARI) x='x+O('x^66); Vec((1+x^8)/(1-x-x^9)) /* Joerg Arndt, Jun 25 2011 */

CROSSREFS

Cf. A005710.

Sequence in context: A260768 A130224 A017903 * A322856 A280863 A059765

Adjacent sequences:  A005708 A005709 A005710 * A005712 A005713 A005714

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 04:46 EDT 2019. Contains 321422 sequences. (Running on oeis4.)