login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005710
a(n) = a(n-1) + a(n-8), with a(i) = 1 for i = 0..7.
(Formerly M0483)
27
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 148, 184, 228, 281, 345, 423, 519, 638, 786, 970, 1198, 1479, 1824, 2247, 2766, 3404, 4190, 5160, 6358, 7837, 9661, 11908, 14674, 18078, 22268, 27428, 33786, 41623
OFFSET
0,9
COMMENTS
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n >= 8, a(n-8) = number of compositions of n in which each part is >= 8. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 8. - Joerg Arndt, Jun 24 2011
a(n+7) equals the number of binary words of length n having at least 7 zeros between every two successive ones. - Milan Janjic, Feb 09 2015
REFERENCES
P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 10.
P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194. [Local copy]
E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018.
D. Kleitman, Solution to Problem E3274, Amer. Math. Monthly, 98 (1991), 958-959.
A. O. Munagi, Euler-type identities for integer compositions via zig-zag graphs, Integers 12 (2012), Paper No. A60, 10 pp.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.
Djamila Oudrar and Maurice Pouzet, Ordered structures with no finite monomorphic decomposition. Application to the profile of hereditary classes, arXiv:2312.05913 [math.CO], 2023. See p. 18.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 1/(1-x-x^8).
For positive integers n and k such that k <= n <= 8*k, and 7 divides n-k, define c(n,k) = binomial(k,(n-k)/7), and c(n,k) = 0, otherwise. Then, for n >= 1, a(n-1) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/8-n/8, 1/4-n/8, 3/8-n/8, 1/2-n/8, 5/8-n/8, 3/4-n/8, 7/8-n/8, -n/8], [1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], -8^8/7^7) for n >= 49. - Peter Luschny, Sep 19 2014
MAPLE
A005710:=-1/(-1+z+z**8); # Simon Plouffe in his 1992 dissertation.
ZL:=[S, {a = Atom, b = Atom, S = Prod(X, Sequence(Prod(X, b))), X = Sequence(b, card >= 7)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=7..62); # Zerinvary Lajos, Mar 26 2008
M := Matrix(8, (i, j)-> if j=1 and member(i, [1, 8]) then 1 elif (i=j-1) then 1 else 0 fi); a := n -> (M^(n))[1, 1]; seq(a(n), n=0..55); # Alois P. Heinz, Jul 27 2008
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
CoefficientList[Series[1/(1-x-x^8), {x, 0, 60}], x] (* Harvey P. Dale, Jun 14 2016 *)
PROG
(PARI) x='x+O('x^66); Vec(x/(1-(x+x^8))) /* Joerg Arndt, Jun 25 2011 */
KEYWORD
nonn,easy
EXTENSIONS
Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
STATUS
approved