login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182510
a(0)=0, a(1)=1, a(n)=(a(n-1) XOR n) - a(n-2).
1
0, 1, 3, -1, -8, -2, 0, 9, 1, -1, -12, 0, 24, 21, 3, -9, -28, -2, 8, 29, 1, -9, -32, 0, 56, 33, 3, -9, -24, -2, -8, -23, -47, 7, 84, 112, 0, -75, -109, -1, 68, 110, 0, -67, -111, -1, 64, 112, 0, -63, -13, -1, -40, -18, 0, 73, 113, -1, -172, -144, -8, 85, 115
OFFSET
0,3
COMMENTS
Conjectures: the sequence contains 8 zeros, and more positive terms than negative.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
a(0)=0, a(1)=1, a(n)=(a(n-1) XOR n) - a(n-2), where XOR is the bitwise exclusive-or operator.
PROG
(Python)
prpr = 0
prev = 1
for n in range(2, 99):
current = (prev ^ n) - prpr
print prpr,
prpr = prev
prev = current
(PARI) v=vector(100); v[1]=0; v[2]=1; for(i=3, #v, v[i]=bitxor(v[i-1], i-1)-v[i-2]); v \\ Charles R Greathouse IV, May 03 2012
CROSSREFS
Cf. A182509.
Sequence in context: A319045 A347134 A360705 * A112420 A010288 A143291
KEYWORD
sign,easy
AUTHOR
Alex Ratushnyak, May 03 2012
STATUS
approved