login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097083
Positive values of k such that there is exactly one permutation p of (1,2,3,...,k) such that i+p(i) is a Fibonacci number for 1<=i<=k.
8
1, 2, 3, 5, 9, 15, 24, 39, 64, 104, 168, 272, 441, 714, 1155, 1869, 3025, 4895, 7920, 12815, 20736, 33552, 54288, 87840, 142129, 229970, 372099, 602069, 974169, 1576239, 2550408, 4126647, 6677056, 10803704, 17480760, 28284464, 45765225
OFFSET
1,2
COMMENTS
Numbers k such that A097082(k) = 1. If f is a Fibonacci number and k < f <= 2k, then a permutation for f-k-1 may be extended to a permutation for k, with p(i) = f-i for f-k < i <= k. This explains the sparseness of this sequence. - David Wasserman, Dec 19 2007
If the formula is correct, the bisections give A059840 and A064831. - David Wasserman, Dec 19 2007
LINKS
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
FORMULA
It appears that {a(n)} satisfies a(1)=1, a(2)=2 and, for n>2, a(n) = F(n+2) - a(n-2) - 1, where {F(k)} is the sequence of Fibonacci numbers, i.e, that the sequence is the partial sums of A006498.
If the partial sum assumption is correct: a(n) = floor(phi^(n+3)/5), where phi=(1+sqrt(5))/2 = A001622, and a(n) = a(n-1) + a(n-2) + ( (n*(n+1)/2) mod 2). - Gary Detlefs, Mar 12 2011
From R. J. Mathar, Mar 13 2011: (Start)
If the partial sum assumption is correct: a(n)= +2*a(n-1) -a(n-2) +a(n-3) -a(n-5).
G.f.: x/( (x-1)*(x^2+1)*(x^2+x-1) ).
a(n) = A000032(n+3)/5 -(-1)^n*A112030(n)/10 - 1/2. (End)
Conjecture: a(n) = floor(F(n+3)/sqrt(5)), where F(n) = A000045(n) are Fibonacci numbers. - Vladimir Reshetnikov, Nov 05 2015
MATHEMATICA
a=b=c=d=0; Table[e=a+b+d+1; a=b; b=c; c=d; d=e, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
CoefficientList[Series[x/((x - 1)*(x^2 + 1)*(x^2 + x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Mar 05 2017 *)
LinearRecurrence[{2, -1, 1, 0, -1}, {1, 2, 3, 5, 9}, 50] (* Harvey P. Dale, Nov 09 2024 *)
PROG
(PARI) x='x+O('x^50); Vec(x/((x - 1)*(x^2 + 1)*(x^2 + x - 1))) \\ G. C. Greubel, Mar 05 2017
CROSSREFS
Sequence in context: A147322 A143282 A323475 * A268709 A326024 A200047
KEYWORD
nonn
AUTHOR
John W. Layman, Jul 23 2004
EXTENSIONS
a(9) from Ray Chandler, Jul 29 2004
More terms from David Wasserman, Dec 19 2007
Terms > 90000 assuming the partial sums formula by Vladimir Joseph Stephan Orlovsky, Feb 26 2011
STATUS
approved