login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
16

%I #23 Jan 05 2020 05:36:05

%S 1,0,1,0,1,3,0,2,12,13,0,2,38,105,73,0,3,110,588,976,501,0,4,302,2811,

%T 8416,9945,4051,0,5,806,12354,59488,121710,111396,37633,0,6,2109,

%U 51543,375698,1185360,1830822,1366057,394353,0,8,5450,207846,2209276,10096795,23420022,28969248,18235680,4596553

%N Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the set; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A319501/b319501.txt">Rows n = 0..140, flattened</a>

%F T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A292804(n,k-i).

%e T(2,2) = 3: {ab}, {ba}, {a,b}.

%e T(3,2) = 12: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}.

%e T(4,2) = 38: {aaab}, {aaba}, {aabb}, {abaa}, {abab}, {abba}, {abbb}, {baaa}, {baab}, {baba}, {babb}, {bbaa}, {bbab}, {bbba}, {a,aab}, {a,aba}, {a,abb}, {a,baa}, {a,bab}, {a,bba}, {a,bbb}, {aa,ab}, {aa,ba}, {aa,bb}, {aaa,b}, {aab,b}, {ab,ba}, {ab,bb}, {aba,b}, {abb,b}, {b,baa}, {b,bab}, {b,bba}, {ba,bb}, {a,aa,b}, {a,ab,b}, {a,b,ba}, {a,b,bb}.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 3;

%e 0, 2, 12, 13;

%e 0, 2, 38, 105, 73;

%e 0, 3, 110, 588, 976, 501;

%e 0, 4, 302, 2811, 8416, 9945, 4051;

%e 0, 5, 806, 12354, 59488, 121710, 111396, 37633;

%e 0, 6, 2109, 51543, 375698, 1185360, 1830822, 1366057, 394353;

%p h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(h(n-i*j, i-1, k)*binomial(k^i, j), j=0..n/i)))

%p end:

%p T:= (n, k)-> add((-1)^i*binomial(k, i)*h(n$2, k-i), i=0..k):

%p seq(seq(T(n, k), k=0..n), n=0..12);

%t h[n_, i_, k_] := h[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[h[n-i*j, i-1, k]* Binomial[k^i, j], {j, 0, n/i}]]];

%t T[n_, k_] := Sum[(-1)^i Binomial[k, i] h[n, n, k-i], {i, 0, k}];

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 05 2020, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000007, A000009 (for n>0), A320203, A320204, A320205, A320206, A320207, A320208, A320209, A320210, A320211.

%Y Main diagonal gives A000262.

%Y Row sums give A319518.

%Y T(2n,n) gives A319519.

%Y Cf. A257740, A292804.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Sep 20 2018