login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319498
Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that for k>0 the k-th letter occurs at least once and within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
4
1, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 2, 16, 18, 24, 0, 3, 39, 80, 84, 120, 0, 4, 106, 323, 432, 480, 720, 0, 5, 245, 1106, 2052, 2820, 3240, 5040, 0, 6, 621, 3822, 10576, 14820, 21480, 25200, 40320, 0, 8, 1431, 13840, 41896, 86724, 124440, 186480, 221760, 362880
OFFSET
0,6
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k <= n. T(n,k) = 0 for k > n.
LINKS
FORMULA
T(n,k) = A292795(n,k) - A292795(n,k-1) for k > 0, T(n,0) = A000007(n).
EXAMPLE
T(3,1) = 2: {aaa}, {aa,a}.
T(3,2) = 5: {aab}, {aba}, {baa}, {ab,a}, {ba,a}.
T(3,3) = 6: {abc}, {acb}, {bac}, {bca}, {cab}, {cba}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 2, 5, 6;
0, 2, 16, 18, 24;
0, 3, 39, 80, 84, 120;
0, 4, 106, 323, 432, 480, 720;
0, 5, 245, 1106, 2052, 2820, 3240, 5040;
0, 6, 621, 3822, 10576, 14820, 21480, 25200, 40320;
...
MAPLE
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i)))
end:
T:= (n, k)-> h(n$2, k) -`if`(k=0, 0, h(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!,
Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]];
T[n_, k_] := h[n, n, k] - If[k == 0, 0, h[n, n, k - 1]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, A000009 (for n>0).
Row sums give A292796.
Main diagonal gives A000142.
First lower diagonal gives A038720 (for n>1).
Sequence in context: A094721 A301951 A144529 * A349782 A011297 A110282
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 20 2018
STATUS
approved