login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A319496
Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
3
2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of connected strict antichains of multisets spanning an initial interval of positive integers.
EXAMPLE
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
Select[Range[200], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], stableQ[primeMS[#], Divisible], Length[zsm[primeMS[#]]]==1]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2018
STATUS
approved