OFFSET
1,1
COMMENTS
a(42) > 10^6.
See A331940 for more information on the Hardy-Littlewood constant. The polynomials described by this sequence are increasingly prime-avoiding.
The following table provides the minimum record values of C, together with the number of primes np generated by the polynomial P(x) = a(n)*x^2 - 1 for 1 <= x <= r = 10^8 and the actual ratio np*(P(r)/r)/Integral_{x=2..P(r)} 1/log(x) dx.
a(n) C np C from ratio
2 3.70011 10448345 3.81422
3 2.07514 5794128 2.13869
7 0.88360 2411224 0.91046
13 0.87451 2344299 0.89971
.. ....... ....... .......
584791 0.21378 445220 0.21860
640819 0.21229 439946 0.21641
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
LINKS
Karim Belabas, Henri Cohen, Computation of the Hardy-Littlewood constant for quadratic polynomials, PARI/GP script, 2020.
Henri Cohen, High precision computation of Hardy-Littlewood constants, preprint, 1998. [pdf copy, with permission]
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Feb 10 2020
STATUS
approved