login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A331950 Addends k > 0 such that the polynomial x^3 + x^2 + k produces a record of its Hardy-Littlewood Constant. 7
1, 17, 101, 1487, 13301, 19421, 91127 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The method for calculating the Hardy-Littlewood constant for quadratic polynomials can be generalized to cubic polynomials (see the preprint by H. Cohen for the exact definition). In this case too, the constant is an estimate of which fraction (e.g. in relation to a random placement) of prime numbers the polynomial hits within its range of values. The following table shows that the ratio of the actual prime number hits for 1 <= x <= 10^8 for different addend values corresponds almost exactly to the ratio of the Hardy-Littlewood constants. The Hardy-Littlewood constant C and the number of prime hits np at offset = 1 are chosen as reference values.

        k     C       np     C(k)/C(1)  np(k)/np(1)

        1 3.075032  5907486  1.0000000  1.0000000

       17 5.653199 10860984  1.8384196  1.8385120

      101 6.035464 11594890  1.9627322  1.9627452

     1487 6.783304 13030949  2.2059297  2.2058366

    13301 6.890698 13236230  2.2408541  2.2405859

    19421 6.967707 13380959  2.2658974  2.2650852

    91127 7.121020 13682111  2.3157547  2.3160632

REFERENCES

Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.

LINKS

Table of n, a(n) for n=1..7.

Karim Belabas, Henri Cohen, Computation of the Hardy-Littlewood constant for quadratic polynomials, PARI/GP script, 2020.

Karim Belabas, Henri Cohen, Computation of the Hardy-Littlewood constant for cubic polynomials, PARI/GP script, 2020.

Henri Cohen, High precision computation of Hardy-Littlewood constants, preprint, 1998. [pdf copy, with permission]

Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.

Wikipedia, Bateman-Horn conjecture.

PROG

(PARI) \\ The functions HardyLittlewood2 and HardyLittlewood3 are provided at the Belabas, Cohen links.

hl3max=0; for(add=0, 101, my(hl=HardyLittlewood3(n^3+n^2+add)); if(hl>hl3max, print1(add, ", "); hl3max=hl))

CROSSREFS

Cf. A050266, A221712, A331940.

Sequence in context: A175518 A215234 A145943 * A234693 A022677 A275919

Adjacent sequences:  A331947 A331948 A331949 * A331951 A331952 A331953

KEYWORD

nonn,more,hard

AUTHOR

Hugo Pfoertner, Feb 04 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 14:39 EDT 2021. Contains 343949 sequences. (Running on oeis4.)