login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A249749
Primes p such that phi(p - k) = phi(p + k) has no solution, where phi is A000010.
1
2, 3, 7, 13, 19, 43, 53, 59, 79, 89, 97, 109, 127, 131, 151, 173, 251, 269, 281, 311, 359, 443, 449, 479, 521, 547, 631, 647, 857, 883, 929, 941, 991, 1123, 1187, 1217, 1327, 1429, 1847, 1999, 2137, 2267, 2297, 2371, 2423, 2803
OFFSET
1,1
COMMENTS
a(66) = 39383, then there are no more terms up to 10^7. - Charles R Greathouse IV, Nov 08 2014
Is 5 the only solution to phi(n) = phi(n-k) + phi(n+k)? - Jon Perry, Nov 08 2014
LINKS
EXAMPLE
5 is not in this sequence because phi(5 - 1) = phi(5 + 1) = 2,
11 is not in this sequence because phi(11 - 1) = phi(11 + 1) = 4,
17 is not in this sequence because phi(17 - 4) = phi(17 + 4) = 12.
MATHEMATICA
aQ[p_] := PrimeQ[p] && AllTrue[Range[p + 1, 2 p - 1], EulerPhi[2p - #] != EulerPhi[#] &]; Select[Range[40000], aQ] (* Amiram Eldar, Jul 11 2019 *)
PROG
(PARI) is(n)=forcomposite(c=n+1, 2*n-1, if(eulerphi(c)==eulerphi(2*n-c), return(0))); isprime(n) \\ Charles R Greathouse IV, Nov 06 2014
CROSSREFS
Cf. A000010 (Euler totient function).
Sequence in context: A319496 A038940 A019383 * A171817 A156300 A067834
KEYWORD
nonn,fini
AUTHOR
STATUS
approved