OFFSET
1,1
COMMENTS
a(66) = 39383, then there are no more terms up to 10^7. - Charles R Greathouse IV, Nov 08 2014
Is 5 the only solution to phi(n) = phi(n-k) + phi(n+k)? - Jon Perry, Nov 08 2014
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..66
EXAMPLE
5 is not in this sequence because phi(5 - 1) = phi(5 + 1) = 2,
11 is not in this sequence because phi(11 - 1) = phi(11 + 1) = 4,
17 is not in this sequence because phi(17 - 4) = phi(17 + 4) = 12.
MATHEMATICA
aQ[p_] := PrimeQ[p] && AllTrue[Range[p + 1, 2 p - 1], EulerPhi[2p - #] != EulerPhi[#] &]; Select[Range[40000], aQ] (* Amiram Eldar, Jul 11 2019 *)
PROG
(PARI) is(n)=forcomposite(c=n+1, 2*n-1, if(eulerphi(c)==eulerphi(2*n-c), return(0))); isprime(n) \\ Charles R Greathouse IV, Nov 06 2014
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Juri-Stepan Gerasimov, Nov 04 2014
STATUS
approved