login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A320532
MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
8
1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
EXAMPLE
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
359: {{1,1,1,2,2}}
371: {{1,1},{1,1,1,1}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
normQ[sys_]:=Or[Length[sys]==0, Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000], And[SquareFreeQ[#], normQ[primeMS/@primeMS[#]], And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2018
STATUS
approved