login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124560
Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0, with R_0(y)=1/(1-y).
14
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 16, 1, 1, 1, 5, 22, 63, 66, 1, 1, 1, 6, 35, 158, 429, 348, 1, 1, 1, 7, 51, 317, 1455, 3716, 2321, 1, 1, 1, 8, 70, 556, 3634, 16918, 40272, 19437, 1, 1, 1, 9, 92, 891, 7581, 52199, 244644, 541655, 203554, 1
OFFSET
0,9
FORMULA
Let F_n(y) be the g.f. of row n in table A124550, then F_n(y) = R_n(y)^n and thus R_n(y) = Sum_{k>=0} y^k * F_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.
EXAMPLE
The g.f. of row n, R_n(y), simultaneously satisfies:
R_n(y) = 1 + y*R_{n}(y)^n + y^2*R_{2n}(y)^(2n) + y^3*R_{3n}(y)^(3n) +...
more explicitly,
R_0 = 1 + y + y^2 + y^3 +... = 1/(1-y),
R_1 = 1 + y*(R_1)^1 + y^2*(R_2)^2 + y^3*(R_3)^3 + y^4*(R_4)^4 +...,
R_2 = 1 + y*(R_2)^2 + y^2*(R_4)^4 + y^3*(R_6)^6 + y^4*(R_8)^8 +...,
R_3 = 1 + y*(R_3)^3 + y^2*(R_6)^6 + y^3*(R_9)^9 + y^4*(R_12)^12 +...,
R_4 = 1 + y*(R_4)^4 + y^2*(R_8)^8 + y^3*(R_12)^12 + y^4*(R_16)^16 +...,
etc., for all rows.
Table begins:
1,1,1,1,1,1,1,1,1,1,...
1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
1,1,3,12,63,429,3716,40272,541655,9022405,186233087,4771577072,...
1,1,4,22,158,1455,16918,244644,4361883,95746603,2592416878,...
1,1,5,35,317,3634,52199,928608,20282765,543008771,17866390922,...
1,1,6,51,556,7581,128532,2689248,68880819,2155007000,82603481941,...
1,1,7,70,891,14036,272914,6525900,190604859,6781448755,...
1,1,8,92,1338,23864,521662,13975298,456468525,18121964864,...
1,1,9,117,1913,38055,921709,27263527,981599065,42880525630,...
1,1,10,145,2632,57724,1531900,49474783,1941904513,92344174075,...
1,1,11,176,3511,84111,2424288,84736940,3594121407,184465174294,...
1,1,12,210,4566,118581,3685430,138423924,6299505191,346530455866,...
1,1,13,247,5813,162624,5417683,217374894,10551425445,618507018238,...
1,1,14,287,7268,217855,7740500,330130230,17007128087,1057156741967,...
1,1,15,330,8947,286014,10791726,487184328,26523926691,1741018836674,...
1,1,16,376,10866,368966,14728894,701255202,40200085065,2776362938533,..
1,1,17,425,13041,468701,19730521,987570893,59420653233,4304220653087,..
PROG
(PARI) {A124550(n, k)=if(k==0, 1, if(n==0, 0, if(k==1, n, if(n<=k, Vec(( 1+x*Ser( vector(k, j, sum(i=0, j-1, A124550(n+i*n, j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1, j, A124550(j-1, k))), x, x/(1+x))/(1+x))), vector(n-k+1)) ), x, x/(1-x))/(1-x +x*O(x^(n))))[n]))))} /* Determined Elements from A124550: */ {T(n, k)=if(n==0|k==0, 1, Vec((Ser(vector(k+1, j, A124550(n, j-1)))+x*O(x^k))^(1/n))[k+1])}
CROSSREFS
Rows: A124551, A124562, A124563, A124564, A124565, A124566; diagonals: A124567, A124568, A124569; A124561 (antidiagonal sums); variants: A124550, A124460, A124530, A124540.
Sequence in context: A070914 A305962 A144150 * A368025 A290759 A306245
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 07 2006
STATUS
approved