The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275044 Number of set partitions of [n^2] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1. 5
 1, 1, 3, 64, 25097, 350813126, 293327384637282, 22208366234650578141209, 213426677887357366350726096998529, 344735749788852590196707169431958672823413322, 118966637603805785518622376062965559343297730169187276656138 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..30 Wikipedia, Partition of a set FORMULA a(n) = (n!)^n * [x^n] exp(Sum_{k>=1} x^k / (k!)^n). - Ilya Gutkovskiy, Jul 12 2020 EXAMPLE a(2) = 3: 1234, 12|34, 14|23. a(3) = 64: 123456789, 123456|789, 123459|678, 123468|579, ... , 159|267|348, 168|279|345, 189|267|345. MAPLE b:= proc(n, k) option remember; `if`(k*n=0, 1, add(        binomial(n, j)^k*(n-j)*b(j, k), j=0..n-1)/n)     end: a:= n-> b(n\$2): seq(a(n), n=0..12); MATHEMATICA b[n_, k_] := b[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*b[j, k], {j, 0, n-1}]/n]; a[n_] := b[n, n]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 27 2018, translated from Maple *) CROSSREFS Main diagonal of A275043. Sequence in context: A174841 A084883 A304288 * A205645 A326429 A300010 Adjacent sequences:  A275041 A275042 A275043 * A275045 A275046 A275047 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 12:19 EDT 2021. Contains 346259 sequences. (Running on oeis4.)