login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326429
E.g.f.: A(x) = sin(-1) + Sum_{n>=0} sin(x^n) * real( (x^n + i)^n ) / n!, an even function, showing only the coefficients of x^(2*n)/(2*n)! in A(x) for n >= 1.
2
1, -3, 65, -7, -166311, -3326411, 250810573, -15, -70140643372783, -16050395192832019, 1253057168563221, 489854682254665727977, -4242091290877439975, -567128617209289175040000027, -469414018487906631382763519971, -31, -99189110152385088675839967, 60136002178464962241806622916607999965, 655685669998967370706944000037, -195445976621261878742262620176483614720000039
OFFSET
1,2
COMMENTS
More generally, the following sums are equal:
(1) sinh(-p*r) + Sum_{n>=0} sinh(p*q^n*r) * ((q^n + p)^n + (q^n - p)^n)/2 * r^n/n!,
(2) sinh(-p*r) + Sum_{n>=0} cosh(p*q^n*r) * ((q^n + p)^n - (q^n - p)^n)/2 * r^n/n!,
under suitable conditions; here, p = i = sqrt(-1), q = x, r = 1.
What is the radius of convergence of the e.g.f. A(x) when expanded as a power series in x?
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n)*x^(2*n)/(2*n)! equals the following sums.
E.g.f.: sin(-1) + Sum_{n>=0} sin(x^n) * real( (x^n + i)^n ) / n!.
E.g.f.: sin(-1) + Sum_{n>=0} cos(x^n) * imag( (x^n + i)^n ) / n!.
a(2^n) = 1 - 2^(n+1) for n >= 1.
EXAMPLE
E.g.f.: A(x) = x^2/2! - 3*x^4/4! + 65*x^6/6! - 7*x^8/8! - 166311*x^10/10! - 3326411*x^12/12! + 250810573*x^14/14! - 15*x^16/16! - 70140643372783*x^18/18! - 16050395192832019*x^20/20! + ...
such that
A(x) = sin(-1) + sin(1)*(1) + sin(x)*(x) + sin(x^2)*(x^4 - 1)/2! + sin(x^3)*(x^9 - 3*x^3)/3! + sin(x^4)*(x^16 - 6*x^8 + 1)/4! + sin(x^5)*(x^25 - 10*x^15 + 5*x^5)/5! + sin(x^6)*(x^36 - 15*x^24 + 15*x^12 - 1)/6! + sin(x^7)*(x^49 - 21*x^35 + 35*x^21 - 7*x^7)/7! + sin(x^8)*(x^64 - 28*x^48 + 70*x^32 - 28*x^16 + 1)/8! + ...
also
A(x) = sin(-1) + cos(1)*(0) + cos(x)*(1) + cos(x^2)*(2*x^2)/2! + cos(x^3)*(3*x^6 - 1)/3! + cos(x^4)*(4*x^12 - 4*x^4)/4! + cos(x^5)*(5*x^20 - 10*x^10 + 1)/5! + cos(x^6)*(6*x^30 - 20*x^18 + 6*x^6)/6! + cos(x^7)*(7*x^42 - 35*x^28 + 21*x^14 - 1)/7! + cos(x^8)*(8*x^56 - 56*x^40 + 56*x^24 - 8*x^8)/8! + ...
COEFFICIENTS OF x^(2^n) IN A(x).
The coefficients of x^(2^n)/(2^n)! in e.g.f. A(x), starting with n = 1, begin:
[1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, ...].
RELATED POLYNOMIALS.
The polynomials real( (x^n + i)^n ) begin:
n=0: 1,
n=1: x,
n=2: x^4 - 1,
n=3: x^9 - 3*x^3,
n=4: x^16 - 6*x^8 + 1,
n=5: x^25 - 10*x^15 + 5*x^5,
n=6: x^36 - 15*x^24 + 15*x^12 - 1,
n=7: x^49 - 21*x^35 + 35*x^21 - 7*x^7,
n=8: x^64 - 28*x^48 + 70*x^32 - 28*x^16 + 1,
...
The polynomials imag( (x^n + i)^n ) begin:
n=0: 0,
n=1: 1,
n=2: 2*x^2,
n=3: 3*x^6 - 1,
n=4: 4*x^12 - 4*x^4,
n=5: 5*x^20 - 10*x^10 + 1,
n=6: 6*x^30 - 20*x^18 + 6*x^6,
n=7: 7*x^42 - 35*x^28 + 21*x^14 - 1,
n=8: 8*x^56 - 56*x^40 + 56*x^24 - 8*x^8,
...
RELATED SERIES.
At x = 1/2, we have
A(1/2) = sin(-1) + Sum_{n>=0} sin(1/2^n) * real( (1/2^n + i)^n ) / n!, also,
A(1/2) = sin(-1) + Sum_{n>=0} cos(1/2^n) * imag( (1/2^n + i)^n ) / n!,
where A(1/2) = 0.11855108754295937931093066450327494094096154528452247568757943...
PROG
(PARI) {a(n) = my(A = sum(m=1, 2*n+1, sin(x^m +x*O(x^(2*n))) * real( (x^m + I)^m ) / m! )); (2*n)!*polcoeff(A, 2*n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A326425.
Sequence in context: A304288 A275044 A205645 * A300010 A196798 A196586
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 04 2019
STATUS
approved