login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326427
E.g.f.: Sum_{n>=0} ((1+x)^n + 1)^n * exp(-x*(1+x)^n) * x^n / n!.
4
1, 1, 3, 7, 85, 621, 9391, 153763, 2985417, 72857305, 2023660891, 64463660031, 2355689179933, 96585061458757, 4411550668276935, 223553495946198811, 12468589636275471121, 760686363827937889713, 50544936457434070715827, 3641703038385219667465975, 283296615496743105794529381, 23710312648334283124382200861, 2128138462625913049294100820703
OFFSET
0,3
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * exp(-p*q^n*r) * r^n/n!,
(2) Sum_{n>=0} (q^n - p)^n * exp(+p*q^n*r) * r^n/n!,
under suitable conditions; here, p = 1, q = 1+x, r = x.
LINKS
FORMULA
E.g.f.: Sum_{n>=0} ((1+x)^n + 1)^n * exp(-x*(1+x)^n) * x^n / n!.
E.g.f.: Sum_{n>=0} ((1+x)^n - 1)^n * exp(+x*(1+x)^n) * x^n / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 7*x^3/3! + 85*x^4/4! + 621*x^5/5! + 9391*x^6/6! + 153763*x^7/7! + 2985417*x^8/8! + 72857305*x^9/9! + 2023660891*x^10/10! + ...
such that
A(x) = exp(-x) + ((1+x)+1)*exp(-x*(1+x))*x + ((1+x)^2+1)^2*exp(-x*(1+x)^2)*x^2/2! + ((1+x)^3+1)^3*exp(-x*(1+x)^3)*x^3/3! + ((1+x)^4+1)^4*exp(-x*(1+x)^4)*x^4/4! + ((1+x)^5+1)^5*exp(-x*(1+x)^5)*x^5/5! + ((1+x)^5+1)^6*exp(-x*(1+x)^6)*x^6/6! + ....
also
A(x) = exp(x) + ((1+x)-1)*exp(x*(1+x))*x + ((1+x)^2-1)^2*exp(x*(1+x)^2)*x^2/2! + ((1+x)^3-1)^3*exp(x*(1+x)^3)*x^3/3! + ((1+x)^4-1)^4*exp(x*(1+x)^4)*x^4/4! + ((1+x)^5-1)^5*exp(x*(1+x)^5)*x^5/5! + ((1+x)^5-1)^6*exp(x*(1+x)^6)*x^6/6! + ....
RELATED SERIES.
Below we illustrate the following identity at specific values of x:
Sum_{n>=0} ((1+x)^n + 1)^n * exp(-x*(1+x)^n) * x^n / n! = Sum_{n>=0} ((1+x)^n - 1)^n * exp(+x*(1+x)^n) * x^n / n!.
(1) At x = -1/2, the following sums are equal
S1 = Sum_{n>=0} (1 + 1/2^n)^n * exp(1/2^(n+1)) * (-1/2)^n / n!,
S1 = Sum_{n>=0} (1 - 1/2^n)^n * exp(-1/2^(n+1)) * (1/2^n) / n!,
where S1 = 0.87858219381273485321461030911688165612390011991090257894390...
(2) At x = -2/3, the following sums are equal
S2 = Sum_{n>=0} (1 + 1/3^n)^n * exp(2/3^(n+1)) * (-2/3)^n / n!,
S2 = Sum_{n>=0} (1 - 1/3^n)^n * exp(-2/3^(n+1)) * (2/3)^n / n!,
where S2 = 1.08434104867591642538828152304288635285016437420102640250465...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, ((1+x)^m + 1 +x*O(x^n))^m * exp(-x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, ((1+x)^m - 1 +x*O(x^n))^m * exp(+x*(1+x)^m +x*O(x^n)) * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 04 2019
STATUS
approved