login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205645
Number of nilpotent loops of order 2*prime(n) up to isotopism.
0
3, 64, 3658004, 1023090941561683953759580, 2684673506279593406254437209960379084, 382103603974564085117495134243710834769544696954218618882023686506660
OFFSET
2,1
COMMENTS
Table 5, p. 20, of Clavier. oddprime(n) = A065091(n) = A000040(n-1).
REFERENCES
L. Clavier, About the autotopisms of abelian groups, 2012.
D. Daly and P. Vojtěchovský, Enumeration of nilpotent loops via cohomology, J. Algebra, 322(11):4080-4098, 2009.
H.O. Pflugfelder, Quasigroups and Loops: Introduction, 1990.
J. D. Phillips and P. Vojtěchovský, The varieties of loops of bolmoufang type, Algebra Universalis, 54(3):259-271, 2005.
LINKS
Lucien Clavier, Enumeration of nilpotent loops up to isotopy, arXiv:1201.5659v1 [math.GR], Jan 26, 2012.
EXAMPLE
a(4) = 3658004 because prime(4) = 7 and there are 3658004 nilpotent loops of order 2*7 = 14.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Jan 29 2012
STATUS
approved